
this print for content only—size & color not accurate spine = 1.057"  560 page count

Books for professionals By professionals®

Pro T-SQL 2005 Programmer’s Guide
Dear Reader,

Welcome to the wonderful world of SQL Server 2005 T-SQL programming. SQL 
Server 2005 introduces dozens of new features for programmers, that I fully cover 
in this book, including the following:

• New and improved tools to interact with SQL Server, such as SQLCMD  
and SQL Server Management Studio

•	 New ways to store, query, and manipulate XML using XPath, XQuery,  
and the new xml data type

•	 .NET integration via the SQL Common Language Runtime (SQLCLR)
•	 Integrated HTTP SOAP endpoints
•	 Built-in encryption statements and functions
•	 Several new T-SQL keywords and functions
•	 Enhancements to existing T-SQL statements

I wrote this book as a feature guide and reference work for developers who 
want to take full advantage of the power of T-SQL on SQL Server 2005. This 
book is particularly useful for experienced T-SQL and SQL programmers from 
other platforms who want to harness the full power of T-SQL on the SQL Server 
2005 platform. And because this book is a guide for developers, I have included 
dozens of code samples that explore each topic as I introduce it. I have also 
organized this book to serve as a handy reference guide for those times when 
you just need a quick refresher on a specific function, or need to see the syntax 
of one of the new T-SQL statements.

In all, I hope that after reading this book you will take with you a sense of the 
power of T-SQL 2005, as well as the practical knowledge to take full advantage of the 
newest member of the SQL Server family in your own application-development 
endeavors. I’ve certainly enjoyed putting this T-SQL 2005 programming book 
together, and I hope you find it valuable in your T-SQL development efforts.

Michael Coles, MCDBA, MCP

US $49.99

Shelve in 
SQL Server

User level: 
Intermediate–Advanced

Coles
Pro T-SQL 2005 Program

m
er’s Guide

The eXperT’s Voice® in sQl serVer

Pro

T-SQL 2005
Programmer’s Guide

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Michael Coles

Companion 
eBook Available

THE APRESS ROADMAP

Beginning SQL Server
2005 Express for Developers

Beginning SQL Server 2005
for Developers

Pro SQL Server 2005

Pro T-SQL 2005
Programmer’s Guide

Microsoft SQL Server
2005 High Availability

Pro SQL Server 2005
Replication

Pro SQL Server 2005
Database Design
and Optimization

www.apress.com
SOURCE CODE ONLINE

Companion eBook

 
See last page for details  

on $10 eBook version

ISBN-13: 978-1-59059-794-1
ISBN-10: 1-59059-794-X

9 781590 597941

54999

The	newest	T-SQL	features	and	functionality	for	
programmers	on	the	SQL	Server	2005	platform



Michael Coles

Pro T-SQL 2005
Programmer’s Guide

794Xfmfinal.qxd  3/29/07  4:17 PM  Page i



Pro T-SQL 2005 Programmer’s Guide

Copyright © 2007 by Michael Coles

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13(pbk): 978-1-59059-794-1

ISBN-10(pbk): 1-59059-794-X

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: James Huddleston
Technical Reviewer: Alexzander N. Nepomnjashiy
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas, 
Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Denise Santoro Lincoln
Copy Edit Manager: Nicole Flores
Copy Editor: Jennifer Whipple
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Esterman
Compositor: Linda Weidemann, Wolf Creek Press
Proofreaders: Lori Bring and Linda Siefert
Indexer: Broccoli Information Management
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, 
or visit http://www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Source Code/
Download section.

794Xfmfinal.qxd  3/29/07  4:17 PM  Page ii



For Devoné and Rebecca

794Xfmfinal.qxd  3/29/07  4:17 PM  Page iii



794Xfmfinal.qxd  3/29/07  4:17 PM  Page iv



Contents at a Glance

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

■CHAPTER 1 The Role of T-SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

■CHAPTER 2 Tools of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

■CHAPTER 3 T-SQL for SQL Server 2000 Programmers . . . . . . . . . . . . . . . . . . . . . . 33

■CHAPTER 4 Control-of-Flow and CASE Expressions . . . . . . . . . . . . . . . . . . . . . . . . . 63

■CHAPTER 5 User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

■CHAPTER 6 Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

■CHAPTER 7 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

■CHAPTER 8 T-SQL Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

■CHAPTER 9 Error Handling and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

■CHAPTER 10 Dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

■CHAPTER 11 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

■CHAPTER 12 XQuery and XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

■CHAPTER 13 SQL Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

■CHAPTER 14 SQLCLR Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

■CHAPTER 15 .NET Client Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

■CHAPTER 16 HTTP Endpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

■APPENDIX A T-SQL Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

■APPENDIX B XQuery Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

■APPENDIX C XQuery Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

■APPENDIX D Selected T-SQL Source Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . 463

■APPENDIX E .NET Source Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

v

794Xfmfinal.qxd  3/29/07  4:17 PM  Page v



794Xfmfinal.qxd  3/29/07  4:17 PM  Page vi



Contents

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

■CHAPTER 1 The Role of T-SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

ANSI SQL Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Imperative vs. Declarative Languages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Elements of Style. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Whitespace Is Your Friend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

One Entry, One Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

SQL-92 Syntax Outer Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Avoid SELECT * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Initializing Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

■CHAPTER 2 Tools of the Trade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SQLCMD Utility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Command-Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

SQLCMD Scripting Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

SQLCMD Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

SQLCMD Interactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

SQL Server Management Studio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

SSMS Editing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Context-Sensitive Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Graphical Query Execution Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Project Management Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page vii



SQL Server 2005 Books Online. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

AdventureWorks Sample Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

■CHAPTER 3 T-SQL for SQL Server 2000 Programmers . . . . . . . . . . . . . . . . . 33

New Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

XML Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

varchar(max), nvarchar(max), and varbinary(max) . . . . . . . . . . . . . . 34

Data Manipulation Language. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Common Table Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

OUTPUT Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

INTERSECT and EXCEPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

TOP Keyword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

CROSS APPLY and OUTER APPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

TABLESAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

PIVOT and UNPIVOT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Ranking Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

NEWSEQUENTIALID Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Synonyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

The OVER Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Other New Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

■CHAPTER 4 Control-of-Flow and CASE Expressions . . . . . . . . . . . . . . . . . . . 63

Three-Valued Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Control-of-Flow Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

BEGIN…END Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

IF…ELSE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

WHILE, BREAK, and CONTINUE Statements . . . . . . . . . . . . . . . . . . . . 68

GOTO Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

WAITFOR Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

RETURN Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

TRY…CATCH Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

■CONTENTSviii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page viii



CASE Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Simple CASE Expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Searched CASE Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

■CHAPTER 5 User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Scalar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Recursion in Scalar UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Procedural Code in UDFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Multistatement Table-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Inline Table-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Restrictions on User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Nondeterministic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

State of the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

■CHAPTER 6 Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Introducing Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ALTER PROCEDURE and DROP PROCEDURE . . . . . . . . . . . . . . . . . . . . . . . 122

Why SPs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

SPs in Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Recursion in SPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Temporary Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

■CHAPTER 7 Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

DML Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

When to Use DML Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Nested Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

The UPDATE and COLUMNS_UPDATED Functions. . . . . . . . . . . . . . 156

Triggers and Identity Columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Altering, Dropping, and Disabling Triggers . . . . . . . . . . . . . . . . . . . . 162

DDL Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

■CONTENTS ix

794Xfmfinal.qxd  3/29/07  4:17 PM  Page ix

32eeceee020b1b6c36f7005aec98cc94



■CHAPTER 8 T-SQL Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

The Encryption Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Service Master Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Database Master Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Certificates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Asymmetric Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Symmetric Keys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Hashing and Encryption Without Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

■CHAPTER 9 Error Handling and Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Legacy Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

TRY…CATCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

RAISERROR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Debugging Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

■CHAPTER 10 Dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

The EXECUTE Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

SQL Injection and Dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

More on Validation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Troubleshooting Dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

sp_executesql . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Dynamic SQL and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Client-Side Parameterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

■CONTENTSx

794Xfmfinal.qxd  3/29/07  4:17 PM  Page x



■CHAPTER 11 XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Legacy XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

FOR XML RAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

FOR XML AUTO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

FOR XML EXPLICIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

FOR XML PATH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

OPENXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

The xml Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Untyped xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Typed xml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

xml Data Type Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

The query() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

The value() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

The exist() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

The nodes() Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

The modify() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

XML Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

XSL Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

■CHAPTER 12 XQuery and XPath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

X-Lingo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

XPath and FOR XML PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

XPath Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Columns Without Names and Wildcards . . . . . . . . . . . . . . . . . . . . . . 278

Element Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

The data() Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

XPath and NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

WITH XMLNAMESPACES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Node Tests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

■CONTENTS xi

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xi



XQuery and the XML Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Expressions and Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

The query() Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Location Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Node Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Axis Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Dynamic XML Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

XQuery Comments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Conditional Expressions (if . . . then . . . else). . . . . . . . . . . . . . . . . . 310

Arithmetic Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

XQuery Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Constructors and Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

FLWOR Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

■CHAPTER 13 SQL Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Catalog Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

INFORMATION_SCHEMA Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Compatibility Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

System Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

■CHAPTER 14 SQLCLR Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

The Old Way . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

The SQLCLR Way. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

SQLCLR Assemblies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

SQLCLR User-Defined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

SQLCLR Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

SQLCLR User-Defined Aggregates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

SQLCLR User-Defined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

■CONTENTSxii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xii



■CHAPTER 15 .NET Client Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

ADO.NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

The .NET SqlClient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Parameterized Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Nonquery, Scalar, and XML Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

SqlBulkCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

Multiple Active Result Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

■CHAPTER 16 HTTP Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

What Are HTTP Endpoints? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

The CREATE ENDPOINT Statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

CREATE ENDPOINT Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

HTTP Protocol Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

SOAP Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

Creating an HTTP Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

WSDL Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Creating a Web Service Consumer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

Executing HTTP Endpoint Ad Hoc Queries . . . . . . . . . . . . . . . . . . . . . 430

The sqlbatch Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Altering and Dropping Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

■APPENDIX A T-SQL Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

■APPENDIX B XQuery Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

■APPENDIX C XQuery Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

■APPENDIX D Selected T-SQL Source Code Listings . . . . . . . . . . . . . . . . . . . . 463

■APPENDIX E .NET Source Code Listings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

■INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

■CONTENTS xiii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xiii



794Xfmfinal.qxd  3/29/07  4:17 PM  Page xiv



About the Author

■MICHAEL COLES is a soldier, a scholar, a software engineer, and a

writer. He has worked in the IT industry for more than a decade, with

an emphasis on database-enabled applications. He has worked in a

wide range of industries, including retail, manufacturing, and tech-

nology, to name a few.

After his most recent tour of active duty military service, Michael

landed in New Jersey and now works as a senior developer for

Barnes & Noble in New York.

xv

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xv



794Xfmfinal.qxd  3/29/07  4:17 PM  Page xvi



About the Technical Reviewer

■ALEXZANDER N. NEPOMNJASHIY works as a Microsoft SQL Server 

DBA with NeoSystems North-West Inc., an ISO 9001:2000–certified

software company. As a DBA, he’s responsible for drafting design

specifications for proposed projects and building database-related

applications to spec. As an IT professional, Alexzander has more

than 13 years experience in DBMS planning, security, trouble-

shooting, and performance optimization.

xvii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xvii



794Xfmfinal.qxd  3/29/07  4:17 PM  Page xviii



Acknowledgments

There are a lot of people I would like to acknowledge for helping to make this book a

reality. First, I’d like to thank the team at Apress. This book would not have been possible

without my editor, Jim Huddleston, who set the tone and got the ball rolling. I’d also like

to thank the keeper of the schedule, Denise Santoro Lincoln, whose dedication and per-

severance kept us all on track.

I’d like to thank my technical reviewer Alexzander Nepomnjashiy for keeping me

honest, copy editor Jennifer Whipple for keeping me consistent, production editor 

Laura Esterman for making it look so good, and everyone else who contributed to

this book.

While I’m at it, I’d like to give special thanks to Steve Jones, Andy Warren, and

Brian Knight, three of the founders of SQL Server Central. These guys thought enough

of my writing to give me my first shot at writing for them. Thanks also to ASP Today edi-

tor Simon Robinson for publishing me and for introducing me to the team at Apress.

Thanks to my family, Jennifer, Chris, Deja, Desmond, and, of course, Mom and Eric

for your support. I’d also like to thank my good friends Rob and Laura Whitlock, and my

Army buddy Joe Johnson.

Thank you to my wonderful girlfriend Donna for all your support.

And most of all, thank you to Devoné and Rebecca for being my little angels.

xix

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xix



794Xfmfinal.qxd  3/29/07  4:17 PM  Page xx



Introduction

This book examines SQL Server 2005 T-SQL from a developer’s perspective. It covers a

wide range of developer-specific topics in SQL Server 2005, from an introduction to new

developer tools such as SQLCMD and SQL Server Management Studio to new T-SQL

functionality such as the xml data type, XQuery support, and T-SQL encryption.

I wrote this book as a practical and useful guide to help you make the most of SQL

Server 2005 T-SQL. I provide a generous selection of sample T-SQL and, where appropri-

ate, .NET code to demonstrate specific functionality.

Who This Book Is For
This book is primarily for developers who want to take advantage of the new features in

SQL Server 2005 T-SQL. The book assumes a basic knowledge of SQL—preferably a prior

version of T-SQL—and builds on that foundation.

How This Book Is Structured
This book is designed so that you can either read it cover to cover, or you can use it as a

reference guide to quickly locate just the information you need on any particular topic.

It is structured as follows:

Chapter 1: The Role of T-SQL

This chapter provides a brief history of T-SQL and the ANSI SQL standards. It also pro-

vides some basic hints and tips for getting the most out of your T-SQL code and main-

taining it over the long term. Those readers coming from a background in SQL Server

2000 T-SQL, who are well-versed in T-SQL programming best practices, might choose

to skip this chapter. 

xxi

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxi



Chapter 2: Tools of the Trade

SQLCMD and SQL Server Management Studio (SSMS) are new tools designed to replace

osql, Enterprise Manager, and Query Analyzer. The online help system and Adventure-

Works sample database are also discussed. If you are just beginning to use SQLCMD or

SSMS, this chapter provides a solid reference.

Chapter 3: T-SQL for SQL Server 2000 Programmers

SQL Server 2005 provides several enhancements that SQL Server 2000 developers will be

able to take advantage of immediately. This chapter covers new SQL Server 2005 data

types, Common Table Expressions (CTEs), and new operators, keywords, and functions.

Chapter 4: Control-of-Flow and CASE Expressions

SQL Server T-SQL has always had procedural extensions built right into it. This chapter

covers ANSI SQL three-valued logic, T-SQL procedural control-of-flow statements, SQL

CASE expressions, and CASE-derivative functions.

Chapter 5: User-Defined Functions

This chapter discusses the three flavors of T-SQL user-defined functions: scalar user-

defined functions, multistatement table-valued functions, and inline table-valued

functions. Examples are provided, with tips on getting the most out of your own user-

defined functions.

Chapter 6: Stored Procedures

SQL Server provides stored procedures, which allow you to create server-side T-SQL

modules. This chapter discusses creation and management of stored procedures, stored

procedure parameters, recursion, and scope.

Chapter 7: Triggers

SQL Server 2005 supports classic Data Manipulation Language (DML) triggers that per-

form actions when you insert, update, or delete rows in a table. Data Definition Language

(DDL) triggers, which fire in response to DDL events, are new to SQL Server 2005 T-SQL.

This chapter discusses both types of triggers.

■INTRODUCTIONxxii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxii



Chapter 8: T-SQL Encryption

SQL Server 2005 T-SQL includes a whole new set of statements to manage encryption

keys and certificates, and a wide range of built-in functions to encrypt and decrypt data.

This chapter explores the new T-SQL encryption key management and data encryption

and decryption tools.

Chapter 9: Error Handling and Debugging

This chapter discusses methods for handling errors in your T-SQL code, including legacy

error handling and the new TRY...CATCH structured error-handling statements. Also dis-

cussed is the built-in Visual Studio T-SQL debugging tools.

Chapter 10: Dynamic SQL

The risks (and how to avoid them) and rewards of dynamic SQL are discussed in this

chapter. Client-side parameterization, SQL injection, and validation are also covered.

Chapter 11: XML

This chapter begins with a discussion of the enhancements to legacy SQL Server XML

functionality provided by SQL Server 2005. The chapter continues with an in-depth dis-

cussion of SQL Server’s new XML functionality, including the new xml data type and its

methods, XML schema collections, typed and untyped XML, XML indexes, and XSL

Transformations.

Chapter 12: XQuery and XPath

This chapter expands on the discussion of the enhanced XML functionality that began

in Chapter 11 by providing an in-depth discussion of the XPath and XQuery capabilities

provided by SQL Server 2005. The information and code samples presented in this chap-

ter are designed to get you up and running with SQL Server 2005 XPath and XQuery

quickly.

Chapter 13: SQL Metadata

SQL Server 2005 provides more ways than ever to retrieve metadata about your server

and database objects. This chapter covers SQL Server catalog views, compatibility views,

ANSI-compatible INFORMATION_SCHEMA views, and system stored procedures.

■INTRODUCTION xxiii

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxiii



Chapter 14: SQLCLR Programming

SQL Server 2005’s Common Language Runtime integration offers new and exciting

possibilities for expanding the power and functionality of your SQL Server–based

applications. This chapter will show you how to create and register SQLCLR assem-

blies that allow access to .NET-based user-defined functions, stored procedures,

user-defined aggregates, and user-defined types.

Chapter 15: .NET Client Programming

The best database in the world is only as useful as its client-side application, and the

.NET Framework provides several tools for client-side SQL Server connectivity. This

chapter discusses ADO.NET, the System.Data.SqlClient namespace and the classes it

exposes for querying data and executing T-SQL statements, and the SqlBulkCopy class.

Chapter 16: HTTP Endpoints

SQL Server’s new HTTP endpoints allow you to expose stored procedures and user-

defined functions as web methods. The new HTTP endpoints feature tight integration

with the SQL Server security model, easy setup and configuration, and greater efficiency

than other methods of exposing SQL Server procedures as web methods.

Prerequisites
At the time of writing, SQL Server 2005 Service Pack 1 was the latest production release.

All of the code samples in the book were developed on SQL Server 2005 Service Pack 1.

Because of changes to the SQL Server engine and to T-SQL in general, I cannot guarantee

compatibility with previous SQL Server 2005 releases, such as the CTP releases.

Most of the code samples were designed to be run against the AdventureWorks

sample database. If you do not have AdventureWorks, I highly recommend that you

download it from http://www.microsoft.com/sql. 

Many of the code samples will run properly on SQL Server 2005 Express Edition, but

some will not due to differences in the available features. For example, SQL Server 2005

Express Edition does not support HTTP endpoints. For complete compatibility, use SQL

Server 2005 Standard Edition or better.

Finally, a lot of the code samples in Chapters 14, 15, and 16 are written in VB and C#.

These samples require the Microsoft .NET Framework 2.0 to run. If you want to compile

and tinker with the code samples, I highly recommend you use Microsoft Visual Studio

2005 for the best overall experience.

■INTRODUCTIONxxiv

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxiv



Source Code 
As you read through the book, you may choose to type in some of the code samples by

hand because it provides more familiarity with the techniques and styles used. Or you

might want to compile, install, execute, modify, or study the code without entering it

manually. Either way, I highly recommend downloading the source and just generally

playing with it as you read the book.

All of the code is available in the Source Code/Download section of the Apress

website at http://www.apress.com.

Errata
Apress and the author have made every effort to ensure that there are no errors in the

text or the code for this book. However, to err is human, and as such we recognize the

need to keep you informed of any mistakes as they’re discovered and corrected. An

errata sheet will be made available on this book’s main page at http://www.apress.com.

If you find an error that hasn’t already been reported, please let us know.

The Apress website acts as a focus for other information and support, including the

code from all Apress books, sample chapters, previews of forthcoming titles, and articles

on related topics.

Contacting the Author
You can contact Michael Coles via email at admin@geocodenet.com.

■INTRODUCTION xxv

794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxv



794Xfmfinal.qxd  3/29/07  4:17 PM  Page xxvi



The Role of T-SQL

The history of Structured Query Language (SQL), and its direct descendant Transact-

SQL (T-SQL), all began in 1970 when Dr. E. F. Codd published his influential paper,

“A Relational Model of Data for Large Shared Data Banks,” in the Communications of

the ACM by the Association for Computing Machinery (ACM). In this paper Dr. Codd

introduced the definitive standard for relational databases. IBM went on to create the

first relational database management system, known as System R. IBM introduced the

Structured English Query Language (SEQUEL, as it was known at the time) to interact

with this early database to store, modify, and retrieve data. The name was subsequently

changed from SEQUEL to the now-common SQL because of a trademark issue. In 1987

the American National Standards Institute (ANSI) approved a standard for SQL known

as the ANSI SQL-86 standard.

Microsoft entered the relational database management system market in 1989

through a joint venture with Sybase and Ashton-Tate (of dBase fame) to create and

market SQL Server. Since then, Microsoft, Sybase, and Ashton-Tate have gone their

separate ways. Microsoft has introduced several upgrades to Microsoft SQL Server,

including Microsoft SQL Server versions 4.2, 4.21, 6.0, 6.5, 7.0, 2000, and 2005.

Through it all, T-SQL has remained SQL Server’s native tongue and the centerpiece 

of SQL Server development.

Although based on the ANSI SQL-92 standard, T-SQL has integrated several ANSI

SQL:1999 standard features. In addition, T-SQL includes advanced procedural extensions

that go above and beyond the ANSI standards. These extensions include control-of-flow

statements, transaction control, error handling, SQLCLR integration, and more. With the

release of SQL Server 2005, Microsoft has expanded T-SQL to include several new features

to support SQLCLR integration, data encryption and decryption, Extensible Markup Lan-

guage (XML) support, and a wide assortment of additional functionality not available in

previous SQL Server releases.

This chapter begins with a discussion of T-SQL ANSI compatibility, then describes

declarative programming languages, and concludes with tips to help you create your own

T-SQL programming style that will help make maintaining and debugging your T-SQL

code as easy as possible.

1

C H A P T E R  1

794Xch01final.qxd  3/29/07  4:51 PM  Page 1



ANSI SQL Compatibility
Many people see portability as the main advantage of the ANSI SQL standard. Theor-

etically, you should be able to take your ANSI-compliant SQL Server query and run it

without change on Oracle, DB2, or any other SQL-based relational database manage-

ment system (RDBMS). The key word here is theoretically. In practice, enough differ-

ences exist between RDBMS platforms to prevent this from being practical. Every

vendor implements different ANSI-compliant features, and every vendor provides

their own proprietary extensions.

What ANSI compatibility does provide, however, is portability of knowledge. A strong

knowledge of the ANSI SQL standard is an excellent starting point for porting SQL code

from one RDBMS to another, or even for porting code from one version of SQL Server to

the next. An ANSI-compliant LEFT OUTER JOIN, for example, will have similar syntax and

produce similar results on any ANSI-compliant RDBMS. The ANSI standard also defines

the format and operation of several key functions such as COUNT() and SUM(), which are

guaranteed to have similar syntax and produce similar results on any ANSI-compliant

RDBMS.

Imperative vs. Declarative Languages
SQL is different from many common programming languages such as C++ and Visual

Basic because it is a declarative language. Languages such as C++, Visual Basic, C#, and

even assembler are imperative languages. The imperative language model requires the

user to determine what the end result should be and also tell the computer step by step

how to achieve that result. It’s analogous to asking a cab driver to drive you to the airport

and then giving him turn-by-turn directions to get there.

Consider Listing 1-1, which is a simple C# code snippet that reads in a flat file of

names and displays them on the screen.

Listing 1-1. C# Snippet to Read a Flat File

StreamReader sr = new StreamReader("Person_Contact.txt");

string FirstName = null;

while ((FirstName = sr.ReadLine()) != null) {

Console.WriteLine(s);

}

sr.Dispose();

CHAPTER 1 ■ THE ROLE OF T-SQL2

794Xch01final.qxd  3/29/07  4:51 PM  Page 2



The example performs the following functions in an orderly fashion:

1. The code explicitly opens the storage for input (in this example a flat file is 

used as a “database”).

2. It then reads in each record (one record per line), explicitly checking for the 

end of file.

3. As it reads the data, the code returns each record for display using

Console.WriteLine().

4. And finally it closes and disposes of the connection to the data file.

Consider what happens when you want to add or delete a name from the flat-file

“database.” In those cases, you must write routines to explicitly reorganize all the data

in the file so it maintains proper ordering. If you want the names to be listed and

retrieved in alphabetical (or any other) order, you must code sort routines as well. Any

type of additional processing on the data requires that you implement separate proce-

dural routines.

Declarative languages such as SQL, on the other hand, let you frame problems in

terms of the end result. All you have to do is describe what you want from SQL Server via

a query and trust the database engine to deliver the correct result as efficiently as possi-

ble. To continue the cab driver analogy from earlier, in a declarative language you would

tell the cab driver to take you to the airport and then trust that he knows the best route.

The SQL equivalent of the C# code in Listing 1-1 might look something like Listing 1-2.

Listing 1-2. SQL Query to Retrieve Names from a Table

SELECT FirstName

FROM Person.Contact;

■Tip Unless otherwise specified, you can run all the T-SQL samples in this book in the AdventureWorks
sample database using SQL Server Management Studio or SQLCMD.

To sort your data, you can simply add an ORDER BY clause to the SELECT query in

Listing 1-2. With properly designed and indexed tables, SQL Server can automatically

reorganize your data for efficient retrieval after you insert, update, or delete rows.

T-SQL includes extensions that allow you to override SQL Server’s declarative syntax.

In fact, you could rewrite the previous example as a cursor to closely mimic the C# sam-

ple code. More often than not, however, trying to force the one-row-at-a-time imperative

CHAPTER 1 ■ THE ROLE OF T-SQL 3

794Xch01final.qxd  3/29/07  4:51 PM  Page 3



model on SQL Server hurts performance and makes simple projects more complex than

they need to be.

One of the great features of SQL Server is that you can invoke its power, in its native

language, from nearly any other programming language. In .NET you can connect and

issue SQL queries and T-SQL statements to SQL Server via the System.Data.SqlClient

namespace, which I will discuss further in Chapter 15. This gives you the opportunity to

combine SQL’s declarative syntax with the strict control of an imperative language.

Elements of Style
Selecting a particular style and using it consistently helps with debugging and code

maintenance. The following sections contain some general recommendations to make

your T-SQL code easy to read, debug, and maintain.

Whitespace Is Your Friend

SQL Server ignores extra whitespace between keywords and identifiers in SQL queries

and statements. A single statement or query can include extra spaces, can contain tab

characters, and can even extend across several lines. You can use this knowledge to great

advantage. Consider Listing 1-3, which is adapted from the HumanResources.vEmployee

view in the AdventureWorks database.

Listing 1-3. HumanResources.vEmployee View from the AdventureWorks Database

SELECT [HumanResources].[Employee].[EmployeeID], [Person].[Contact].[Title],

[Person].[Contact].[FirstName], [Person].[Contact].[MiddleName],

[Person].[Contact].[LastName], [Person].[Contact].[Suffix],

[HumanResources].[Employee].[Title] AS [JobTitle], [Person].[Contact].[Phone],

[Person].[Contact].[EmailAddress], [Person].[Contact].[EmailPromotion],

[Person].[Address].[AddressLine1], [Person].[Address].[AddressLine2],

[Person].[Address].[City], [Person].[StateProvince].[Name] AS [StateProvinceName],

[Person].[Address].[PostalCode], [Person].[CountryRegion].[Name] AS

[CountryRegionName], [Person].[Contact].[AdditionalContactInfo] FROM

[HumanResources].[Employee] INNER JOIN [Person].[Contact] ON

[Person].[Contact].[ContactID] = [HumanResources].[Employee].[ContactID] INNER JOIN

[HumanResources].[EmployeeAddress] ON [HumanResources].[Employee].[EmployeeID] =

[HumanResources].[EmployeeAddress].[EmployeeID] INNER JOIN [Person].[Address] ON

[HumanResources].[EmployeeAddress].[AddressID] = [Person].[Address].[AddressID]

CHAPTER 1 ■ THE ROLE OF T-SQL4

794Xch01final.qxd  3/29/07  4:51 PM  Page 4



INNER JOIN [Person].[StateProvince] ON [Person].[StateProvince].[StateProvinceID] =

[Person].[Address].[StateProvinceID] INNER JOIN [Person].[CountryRegion] ON

[Person].[CountryRegion].[CountryRegionCode] =

[Person].[StateProvince].[CountryRegionCode]

This query will run and return the correct result, but it’s hard to read. You can use

whitespace and table aliases to generate a version that is much easier on the eyes, as

demonstrated in Listing 1-4.

Listing 1-4. HumanResources.vEmployee View Reformatted for Readability

SELECT e.EmployeeID,

c.Title,

c.FirstName,

c.MiddleName,

c.LastName,

c.Suffix,

e.Title AS JobTitle,

c.Phone,

c.EmailAddress,

c.EmailPromotion,

a.AddressLine1,

a.AddressLine2,

a.City,

sp.Name AS StateProvinceName,

a.PostalCode,

cr.Name AS CountryRegionName,

c.AdditionalContactInfo

FROM HumanResources.Employee e

INNER JOIN Person.Contact c

ON c.ContactID = e.ContactID

INNER JOIN HumanResources.EmployeeAddress ea

ON e.EmployeeID = ea.EmployeeID

INNER JOIN Person.Address a

ON ea.AddressID = a.AddressID

INNER JOIN Person.StateProvince sp

ON sp.StateProvinceID = a.StateProvinceID

INNER JOIN Person.CountryRegion cr

ON cr.CountryRegionCode = sp.CountryRegionCode;

CHAPTER 1 ■ THE ROLE OF T-SQL 5

794Xch01final.qxd  3/29/07  4:51 PM  Page 5



Notice the ON keywords are indented, associating them visually with the INNER JOIN

operators directly before them in the listing. The column names on the lines directly after

the SELECT keyword are also indented, associating them visually with the SELECT keyword.

This particular style is useful in helping visually break up a query into sections. The per-

sonal style you decide upon might differ from this one, but once you have decided on a

standard indentation style, be sure to apply it consistently throughout your code.

Code that is easy to read is, by default, easier to debug and maintain. The second ver-

sion uses table aliases, plenty of whitespace, and the semicolon (;) terminator to mark

the end of the SELECT statement in order to make the code more easily readable. Although

not always required, it is a good idea to get into the habit of using the terminating semi-

colon in your SQL queries.

■Note Semicolons are required terminators for some statements in SQL Server 2005. Instead of trying to
remember all the special cases where they are or aren’t required, it is a good idea to get into the habit of
using the semicolon statement terminator throughout your T-SQL code. You might notice the use of semi-
colon terminators in all the examples in this book.

Naming Conventions

SQL Server allows you to name your database objects, such as tables, views, procedures,

and so on, using just about any combination of up to 128 characters (116 characters for

local temporary table names) as long as you enclose them in double quotes (") or brack-

ets ([ ]). Just because you can, however, doesn’t necessarily mean you should. Many of

the allowed characters are hard to differentiate from other similar-looking characters,

and some might not port well to other platforms. The following suggestions will help you

avoid potential problems:

• Use alphabetic characters (A–Z, a–z, and Unicode Standard 3.2 letters) for the first

character of your identifiers. The obvious exceptions are SQL Server variable

names that start with the at sign (@), temporary tables and procedures that start

with the number sign (#), and global temporary tables and procedures that begin

with the double number sign (##).

• Many built-in T-SQL functions and system variables have names that begin with

a double at sign (@@), such as @@ERROR and @@IDENTITY. To avoid confusion and

possible conflicts, don’t use a leading double at sign to name your identifiers.

CHAPTER 1 ■ THE ROLE OF T-SQL6

794Xch01final.qxd  3/29/07  4:51 PM  Page 6



• Restrict the remaining characters in your identifiers to alphabetic characters 

(A–Z, a–z, and Unicode Standard 3.2 letters), numeric digits (0–9), and the under-

score character (_). The dollar sign ($) character, while allowed, is not advisable.

• Avoid embedded spaces, punctuation marks (other than the underscore charac-

ter), and other special characters in your identifiers.

• Avoid using SQL Server 2005 reserved keywords as identifiers (Appendix A lists

the SQL Server reserved keywords).

• Limit the length of your identifiers. Thirty-two characters or less is a reasonable

limit while not being overly restrictive. Much more than that becomes cumber-

some to type and can hurt your code readability.

Finally, to make your code more readable, select a capitalization style for your

identifiers and code, and use it consistently. My preference is to fully capitalize T-SQL

keywords and use mixed case and underscore characters to visually “break up” identi-

fiers into easily readable words. Using all capital characters or inconsistently applying

mixed case to code and identifiers can make your code illegible and hard to maintain.

Consider the example query in Listing 1-5.

Listing 1-5. All-Capital SELECT Query

SELECT I.CUSTOMERID, C.TITLE, C.FIRSTNAME, C.MIDDLENAME,

C.LASTNAME, C.SUFFIX, C.PHONE, C.EMAILADDRESS,

C.EMAILPROMOTION

FROM SALES.INDIVIDUAL I

INNER JOIN PERSON.CONTACT C

ON C.CONTACTID = I.CONTACTID

INNER JOIN SALES.CUSTOMERADDRESS CA

ON CA.CUSTOMERID = I.CUSTOMERID;

The all-capital version is difficult to read. It’s hard to tell the SQL keywords from the

column and table names at a glance. Compound words for column and table names are

not easily identified. Basically, your eyes work a lot harder to read this query than they

should have to, which makes otherwise simple maintenance tasks more difficult. Refor-

matting the code and identifiers makes this query much easier on the eyes, as Listing 1-6

demonstrates.

CHAPTER 1 ■ THE ROLE OF T-SQL 7

794Xch01final.qxd  3/29/07  4:51 PM  Page 7



Listing 1-6. Reformatted “Easy-on-the-Eyes” Query

SELECT i.CustomerID,

c.Title,

c.FirstName,

c.MiddleName,

c.LastName,

c.Suffix,

c.Phone,

c.EmailAddress,

c.EmailPromotion

FROM Sales.Individual i

INNER JOIN Person.Contact c

ON c.ContactID = i.ContactID

INNER JOIN Sales.CustomerAddress ca

ON ca.CustomerID = i.CustomerID;

The use of all capitals for the keywords in the second version makes them stand

out from the mixed-case table and column names. Likewise, the mixed-case column

and table names make the compound word names easy to recognize. The net effect is

that the code is easier to read, which makes it easier to debug and maintain. Consistent

use of good formatting habits helps keep trivial changes trivial and makes complex

changes easier.

One Entry, One Exit

When writing stored procedures (SPs) and user-defined functions (UDFs), it’s good

programming practice to use the “one entry, one exit” rule. SPs and UDFs should

have a single entry point and a single exit point (RETURN statement). The following

stored procedure retrieves the ContactTypeID number from the AdventureWorks

Person.ContactType table for the ContactType name passed into it. If no ContactType

exists with the name passed in, a new one is created, and the newly created

ContactTypeID is passed back. Listing 1-7 demonstrates this simple procedure with

one entry point and several exit points.

CHAPTER 1 ■ THE ROLE OF T-SQL8

794Xch01final.qxd  3/29/07  4:51 PM  Page 8



Listing 1-7. Stored Procedure Example with One Entry, Multiple Exits

CREATE PROCEDURE dbo.GetOrAdd_ContactType

(

@Name NVARCHAR(50),

@ContactTypeID INT OUTPUT

)

AS

DECLARE @Err_Code AS INT;

SELECT @Err_Code = 0;

SELECT @ContactTypeID = ContactTypeID

FROM Person.ContactType

WHERE [Name] = @Name;

IF @ContactTypeID IS NOT NULL

RETURN;             -- Exit 1: if the ContactType exists

INSERT

INTO Person.ContactType ([Name], ModifiedDate)

SELECT @Name, CURRENT_TIMESTAMP;

SELECT @Err_Code = @@error;

IF @Err_Code <> 0

RETURN @Err_Code; -- Exit 2: if there is an error on INSERT

SELECT @ContactTypeID = SCOPE_IDENTITY();

RETURN @Err_Code;       -- Exit 3: after successful INSERT

GO

Listing 1-8 updates the previous example to give it a single entry point and a single

exit point, making the logic easier to follow.

Listing 1-8. Stored Procedure with One Entry, One Exit

CREATE PROCEDURE dbo.GetOrAdd_ContactType

(

@Name NVARCHAR(50),

@ContactTypeID INT OUTPUT

)

CHAPTER 1 ■ THE ROLE OF T-SQL 9

794Xch01final.qxd  3/29/07  4:51 PM  Page 9



AS

DECLARE @Err_Code AS INT;

SELECT @Err_Code = 0;

SELECT @ContactTypeID = ContactTypeID

FROM Person.ContactType

WHERE [Name] = @Name;

IF @ContactTypeID IS NULL

BEGIN

INSERT

INTO Person.ContactType ([Name], ModifiedDate)

SELECT @Name, CURRENT_TIMESTAMP;

SELECT @Err_Code = @@error;

IF @Err_Code = 0 -- If there's an error, skip next

SELECT @ContactTypeID = SCOPE_IDENTITY();

END

RETURN @Err_Code;   -- Single exit point

GO

This rule also applies to looping structures, which you implement via the WHILE

statement in T-SQL. Avoid using the WHILE loop’s CONTINUE and BREAK statements and the

GOTO statement; these statements lead to old-fashioned, difficult-to-maintain “spaghetti

code.”

SQL-92 Syntax Outer Joins

Microsoft has been warning us for a long time, and now it has finally gone and done it.

SQL Server 2005 finally eliminates the old-style *= and =* outer join operators. Queries

like the one in Listing 1-9 won’t work with SQL Server 2005.

Listing 1-9. Query Using Old-Style Join Operators

SELECT o.name

FROM sys.objects o,

sys.views v

WHERE o.object_id *= v.object_id;

CHAPTER 1 ■ THE ROLE OF T-SQL10

794Xch01final.qxd  3/29/07  4:51 PM  Page 10



SQL responds to this query with one of the most elaborate error messages ever seen

in a Microsoft product:

Msg 4147, Level 15, State 1, Line 4

The query uses non-ANSI outer join operators ("*=" or "=*"). To run this query

without modification, please set the compatibility level for current database

to 80 or lower, using stored procedure sp_dbcmptlevel. It is strongly

recommended to rewrite the query using ANSI outer join operators (LEFT OUTER

JOIN, RIGHT OUTER JOIN). In the future versions of SQL Server, non-ANSI join

operators will not be supported even in backward-compatibility modes.

As the error message suggests, you can use the sp_dbcmptlevel stored procedure to

revert the database compatibility to 80 (SQL Server 2000) to circumvent the problem.

As the error message also suggests, the old-style join operators will not be supported in

future versions, even in backward-compatibility mode. If you do have old-style joins in

your T-SQL code, the best course of action is to convert them to ANSI SQL standard

joins as soon as possible. Listing 1-10 updates the previous query to use the current

ANSI standard.

Listing 1-10. ANSI SQL-92 Standard Join Syntax

SELECT o.name

FROM sys.objects o

LEFT JOIN sys.views v

ON o.object_id = v.object_id;

■Note You can use sp_dbcmptlevel to revert various SQL Server behaviors to a version prior to SQL
Server 2000. Use a compatibility level of 80 for SQL Server 2000, 70 for SQL Server 7.0, 65 for SQL
Server 6.5, and 60 for SQL Server 6.0. You should avoid this unless you have a “compelling reason” for
reverting to old compatibility modes.

This book uses the ANSI SQL-92 syntax joins in its examples.

CHAPTER 1 ■ THE ROLE OF T-SQL 11

794Xch01final.qxd  3/29/07  4:51 PM  Page 11



Avoid SELECT *

Consider the SELECT * style of querying. In a SELECT clause, the asterisk (*) is a shorthand

way of specifying that all columns in a table should be returned. Although SELECT * is a

handy tool for ad hoc querying of tables during development and debugging, you should

not use it in a production system. One reason to avoid this method of querying is to mini-

mize the amount of data retrieved with each call. SELECT * retrieves all columns, whether

or not they are needed by the higher-level applications. For queries that return a large

number of rows, even one or two extraneous columns can waste a lot of resources.

Also, if the underlying table or view is altered, your front-end application can receive

extra columns in, or columns could be missing from, the result set returned, causing

errors that can be hard to locate. By specifying the column names, your front-end appli-

cation can be assured that only the required columns are returned by a query and that

errors caused by missing columns will be easier to locate.

Initializing Variables

When you create stored procedures, user-defined functions, or any script that uses T-SQL

user variables, you should initialize those variables before the first use. Unlike other pro-

gramming languages that guarantee newly declared variables will be initialized to 0 or an

empty string (depending on their data types), T-SQL guarantees only that newly declared

variables will be initialized to NULL. Consider the code snippet shown in Listing 1-11.

Listing 1-11. Sample Code Using an Uninitialized Variable

DECLARE @i INT;

SELECT @i = @i + 5;

SELECT @i;

The result is NULL, a shock if you were expecting 5. Expecting SQL Server to initialize

numeric variables to 0 (like @i in the previous example), or an empty string, will result in

bugs that can be extremely difficult to locate in your T-SQL code. To avoid these prob-

lems, always explicitly initialize your variables after declaration, as demonstrated in

Listing 1-12.

Listing 1-12. Sample Code Using an Initialized Variable

DECLARE @i INT;

SELECT @i = 0; -- Added this statement to initialize @i to 0

SELECT @i = @i + 5;

SELECT @i;

CHAPTER 1 ■ THE ROLE OF T-SQL12

794Xch01final.qxd  3/29/07  4:51 PM  Page 12



Summary
This chapter introduced T-SQL. The topics discussed include ANSI SQL:1999 compatibil-

ity in SQL Server 2005 and the difference between imperative and declarative languages.

You also looked at SQL programming style considerations and how they can make your

T-SQL code easy to debug and maintain.

The next chapter provides an overview of the new and improved tools available “out

of the box” for developers. Specifically, Chapter 2 will discuss the SQLCMD replacement

for osql, as well as SQL Server Management Studio, SQL Server 2005 Books Online, and

some of the other tools available for making writing, editing, testing, and debugging eas-

ier and faster than ever.

CHAPTER 1 ■ THE ROLE OF T-SQL 13

794Xch01final.qxd  3/29/07  4:51 PM  Page 13



794Xch01final.qxd  3/29/07  4:51 PM  Page 14



Tools of the Trade

SQL Server 2005 comes with a host of tools and utilities to make development easier.

Some of the most important tools for developers include the following:

• The SQLCMD utility

• Microsoft SQL Server Management Studio

• SQL Server 2005 Books Online

This chapter discusses these tools as well as the AdventureWorks sample database,

which I use in the examples in this book. Along the way, this chapter will also cover some

of the SQL Server connectivity features of Visual Studio 2005.

SQLCMD Utility
The SQLCMD utility is an update to the SQL 2000 osql command-line utility. You can use

it to execute batches of T-SQL statements from script files, individual queries or batches

of queries in interactive mode, or individual queries from the command line.

Command-Line Options

You can run SQLCMD from the command line with the following syntax:

sqlcmd [ [-U login_id ] [-P password ] | [-E] ]

[-S server [\instance] ] [-d db_name] [-H workstation]

[-l timeout] [-t timeout] [-h headers] [-s column_separator] [-w column_width]

[-a packet_size] [-I] [-L[c] ] [-W] [-r[0|1]]

[-q "query"] [-Q "query"] [-c batch_term] [-e]

[-m error_level] [-V severity_level] [-b]

[-i input_file [,input_file2 [, ...] ] ] [-o output_file] [-u]

[-v var = "value" [,var2 = "value2"] [,...] ] [-X[1] ] [-x] [-?]

15

C H A P T E R  2

794Xch02final.qxd  3/29/07  4:50 PM  Page 15



[-z new_password] [-Z new_password]

[-f codepage | i:in_codepage [,o:out_codepage] ]

[-k[1|2] ] [-y display_width] [-Y display_width] [-p[1] ] [-R] [-A]

The command-line switches are case-sensitive. Table 2-1 lists the SQLCMD

command-line options.

Table 2-1. SQLCMD Command-Line Options

Option Description

-? The -? option displays the SQLCMD help/syntax screen.

-A The -A option tells SQLCMD to log in to SQL Server with a
Dedicated Administrator Connection. This type of connection is
usually used for troubleshooting.

-a packet_size The -a option requests communications with a specific packet
size. The default is 4096. packet_size must be from 512 to 32767.

-b The -b option specifies that SQLCMD exits on an error and returns
an ERRORLEVEL value to the operating system. When this option is
set, a SQL error of severity 11 or greater will return an ERRORLEVEL
of 1; an error or message of severity 10 or less will return an
ERRORLEVEL of 0. If the -V option is also used, SQLCMD will report
only the errors with a severity greater than or equal to the
severity_level (level 11 or greater) specified with the -V option.

-c batch_term The -c option specifies the batch terminator. By default it is the GO
keyword. Avoid using special characters and reserved words as the
batch terminator.

-d db_name The -d option specifies the database to use after SQLCMD
connects to SQL Server. Alternatively, you can set this option via
the SQLCMDDBNAME environment variable. If the database specified
does not exist, SQLCMD exits with an error.

-E The -E option uses a trusted connection (Windows Authentication
mode) to connect to SQL Server. This option ignores the
SQLCMDUSER and SQLCMDPASSWORD environment variables, and you
cannot use it with the -U and -P options.

-e The -e option prints (echoes) input scripts to the standard output
device (usually the screen by default).

CHAPTER 2 ■ TOOLS OF THE TRADE16

794Xch02final.qxd  3/29/07  4:50 PM  Page 16



Option Description

-f codepage | i:in_codepage The -f option specifies the code pages for input and output. If i: is 
[,o:out_codepage] specified, the in_codepage is the input code page. If o: is specified,

out_codepage is the output code page. If i: and o: are not speci-
fied, codepage supplied is the input and output code pages. To
specify code pages, use their numeric identifier. The following
code pages are supported by SQL Server 2005:
Code Page Number Code Page Name
1258 Vietnamese
1257 Baltic
1256 Arabic
1255 Hebrew
1254 Turkish
1253 Greek
1252 Latin1 (ANSI)
1251 Cyrillic
1250 Central European
950 Chinese(Traditional)
949 Korean
936 Chinese (Simplified)
932 Japanese
874 Thai
850 Multilingual (MS-DOS Latin1)
437 MS-DOS U.S. English

-H workstation The -H option sets the workstation name. You can use -H to
differentiate between sessions with commands such as sp_who.

-h headers The -h option specifies the number of rows of data to print before
a new column header is generated. The value must be from –1 (no
headers) to 2147483647. The default value of 0 prints headings
once for each set of results.

-I The -I option sets the connection QUOTED_IDENTIFIER option to ON.
Turning the QUOTED_IDENTIFIER option on makes SQL Server follow
the ANSI SQL-92 rules for quoted identifiers. This option is set to
OFF by default.

-i input_file [,input_file2] The -i option specifies SQLCMD should use files that contain 
[,...] batches of T-SQL statements for input. The files are processed in

order from left to right. If any of the files don’t exist, SQLCMD exits
with an error. You can use the GO batch terminator inside your SQL
script files.

-k [1|2] The -k option removes control characters from the output. If 1 is
specified, control characters are replaced one for one with spaces.
If 2 is specified, consecutive control characters are replaced with a
single space.

Continued

CHAPTER 2 ■ TOOLS OF THE TRADE 17

794Xch02final.qxd  3/29/07  4:50 PM  Page 17



Table 2-1. Continued

Option Description

-L [c] The -L option returns a listing of available SQL Server machines on
the network and local computer. If the -Lc format is used, a “clean”
listing is returned without heading information. The listing is
limited to a maximum of 3,000 servers. Note that because of the
way SQL Server broadcasts to gather server information, any
servers that don’t respond in a timely manner will not be included
in the list. You cannot use the -L option with other options.

-l timeout The -l option specifies the login timeout. The timeout value must
be from 0 to 65534. The default value is 8 seconds, and a value of 0
is no timeout (infinite).

-m error_level The -m option defines an error message customization level. Only
errors with a severity greater than the specified level are displayed.
If error_level is -1, all messages are returned, even informational
messages.

-o output_file -o specifies the file to which SQLCMD should direct output. If -o is
not specified, SQLCMD defaults to standard output (usually the
screen).

-P password The -P option specifies a password to log in to SQL Server when
using SQL Authentication mode. If -P is omitted, SQLCMD looks
for the SQLCMDPASSWORD environment variable to get the password
to log in. If the SQLCMDPASSWORD environment variable isn’t found,
SQLCMD will prompt you for the password to log in using SQL
Authentication mode. If neither -P nor -U is specified and the cor-
responding environment variables aren’t set, SQLCMD will attempt
to log in using Windows Authentication mode.

-p [1] The -p option prints performance statistics for each result set.
Specifying 1 produces colon-separated output.

-Q "query" The -Q and -q options both execute a SQL query/command from 
-q "query" the command line. -q remains in SQLCMD after query comple-

tion. -Q exits SQLCMD after completion.

-R The -R option specifies client regional settings for currency and
date/time formatting.

-r [0|1] The -r option redirects error message output to the standard error
output device, the monitor by default. If 1 is specified, all error
messages and informational messages are redirected. If 0 or no
number is specified, only error messages with a severity of 11 or
greater are redirected. The redirection does not work with the -o
option; it does work if standard output is redirected with the
Windows command-line redirector (>).

-S server [\instance] The -S option specifies the SQL Server server or named instance
to which SQLCMD should connect. If this option is not specified,
SQLCMD connects to the default SQL Server instance on the local
machine.

CHAPTER 2 ■ TOOLS OF THE TRADE18

794Xch02final.qxd  3/29/07  4:50 PM  Page 18



Option Description

-s column_separator The -s option sets the column separator character. By default the
column separator is a space character. separator can be enclosed
in quotes, which is useful if you want to use a character that the
operating system recognizes as a special character such as the
greater-than sign (>).

-t timeout The -t option specifies the SQL query/command timeout in
seconds. The timeout value must be from 0 to 65535. If -t is not
specified or if it is set to 0, queries/commands do not time out.

-U login_id The -U option specifies the user login ID to log in to SQL Server
using SQL Authentication mode. If the -U option is omitted,
SQLCMD looks for the SQLCMDUSER environment variable to get the
login password. If the -U option is omitted, SQLCMD attempts to
use the current user’s Windows login name to log in.

-u The -u option specifies that the output of SQLCMD will be in
Unicode format. Use this option with the -o option.

-V severity_level The -V option specifies the lowest severity level that SQLCMD
reports back. Errors and messages of severity less than
severity_level are reported as 0. severity_level must be from
1 to 25. In a command-line batch file, -V returns the severity level
of any SQL Server errors encountered via the ERRORLEVEL so your
batch file can take appropriate action.

-v var = "value" [,var2 = The -v option sets scripting variables that SQLCMD can use in 
"value2"] [,...]] your scripts to the specified values. I describe scripting variables

later in this chapter.

-W The -W option removes trailing spaces from a column. You can use
this option with the -s option when preparing data that is to be
exported to another application. You cannot use -W in conjunction
with the -Y or -y option.

-w column_width The -w option specifies screen width for output. The width must be
from 9 to 65535. The default of 0 is equivalent to the width of the
output device. For screen output, the default is the width of the
screen. For files, the default width is unlimited.

-X [1] The -X option disables options that can compromise security in
batch files. Specifically, the -X option does the following:
• Disables the SQLCMD :!! and :ED commands.
• Prevents SQLCMD from using operating system environment 
• variables.
• Disables the SQLCMD start-up script.
If a disabled command is encountered, SQLCMD issues a warning
and continues processing. If the optional 1 is specified with the -X
option, SQLCMD exits with an error when a disabled command is
encountered. I describe SQLCMD commands, script variables,
environment variables, and the start-up script in more detail later
in this chapter.

-x The -x option forces SQLCMD to ignore scripting variables.

Continued

CHAPTER 2 ■ TOOLS OF THE TRADE 19

794Xch02final.qxd  3/29/07  4:50 PM  Page 19



Table 2-1. Continued

Option Description

-Y display_width The -Y option limits the number of characters returned for the
char, nchar, varchar (8000 bytes or less), nvarchar (4000 bytes or
less), and sql_variant data types.

-y display_width The -y option limits the number of characters returned for
variable-length data types such as varchar(max), varbinary(max),
xml, text, and fixed-length or variable-length user-defined types
(UDTs).

-Z new_password When used with SQL Authentication (the -U and -P options), the 
-z new_password -z and -Z options change the SQL login password. If the -P option

is not specified, SQLCMD will prompt you for the current pass-
word. -z changes the password and enters interactive mode. -Z
exits SQLCMD immediately after the password is changed.

SQLCMD Scripting Variables

SQLCMD has several built-in scripting variables. These SQLCMD scripting variables

control various aspects of SQLCMD functionality, such as the login timeout and output

width settings. You can use many of these SQLCMD scripting variables in place of, or in

conjunction with, various SQLCMD command-line options. When run, SQLCMD per-

forms the following start-up actions:

1. It looks for the appropriate settings on the command line and implicitly sets the

appropriate scripting variables based on the command-line switches.

2. SQLCMD then reads the Windows environment settings and sets the SQLCMD

scripting variables to the appropriate values, if available.

3. Finally, the SQLCMD initialization/start-up script is run, and :setvar commands

in the script set SQLCMD scripting variables as appropriate.

■Note The -X and -x options disable start-up script execution and environment variable access, respec-
tively. -x also prevents SQLCMD from dynamically replacing scripting variable references in your code with
the appropriate values. This is a feature designed for secure environments where scripting variable usage
could compromise security.

Table 2-2 lists the SQLCMD scripting variables, their defaults, and the associated

command-line switches.

CHAPTER 2 ■ TOOLS OF THE TRADE20

794Xch02final.qxd  3/29/07  4:50 PM  Page 20



Table 2-2. SQLCMD Scripting Variables

Name Default Read/Write Description

SQLCMDUSER <empty string> Read-only SQL Server login username. See the 
-U command-line switch.

SQLCMDPASSWORD <empty string> N/A SQL Server login password. See the 
-P command-line switch.

SQLCMDSERVER server name Read-only SQL Server/instance name. See the 
-S command-line switch.

SQLCMDWORKSTATION <empty string> Read-only SQL Server workstation name. See
the -H command-line switch.

SQLCMDDBNAME <empty string> Read-only Default database name. See the 
-d command-line switch.

SQLCMDLOGINTIMEOUT 8 Read/write Login timeout setting (in secs). See
the -l command-line switch.

SQLCMDSTATTIMEOUT 0 Read/write Query/command timeout setting
(in secs). See the -t command-line
switch.

SQLCMDHEADERS 0 Read/write Number of lines to print between
result-set headers. See the -h
command-line switch.

SQLCMDCOLSEP <space> Read/write Column separator character. See
the -s command-line switch.

SQLCMDCOLWIDTH 0 Read/write Output column width. See the 
-w command-line switch.

SQLCMDPACKETSIZE 4096 Read-only Packet size being used for SQL
communications. See the -a
command-line switch.

SQLCMDERRORLEVEL 0 Read/write Level of error message customiza-
tion. See the -m command-line
switch.

SQLCMDMAXVARTYPEWIDTH 0 Read/write Variable-length data type display
limit. See the -y command-line
switch.

SQLCMDMAXFIXEDTYPEWIDTH 256 Read/write Fixed-width data type display limit. 
See the -Y command-line switch.

SQLCMDINI <empty string> Read-only SQLCMD start-up script.

■Note You can set the SQLCMD scripting variables specified as read-only via environment variables
(Windows SET command) or via SQLCMD command-line options. You cannot alter them from within a
SQLCMD script, however.

CHAPTER 2 ■ TOOLS OF THE TRADE 21

794Xch02final.qxd  3/29/07  4:50 PM  Page 21



You can reference scripting variables set by the command-line -v switch or by the

SQLCMD :setvar command (discussed in the next section), the Windows environment

variables, or the built-in SQLCMD scripting variables from within SQLCMD scripts. The

format to access all these variables is the same: $(variable_name). SQLCMD replaces your

scripting variables with their respective values during script execution. Here are a few

examples:

-- Windows environment variable

SELECT '$(PATH)';

-- SQLCMD scripting variable

SELECT '$(SQLCMDSERVER)';

-- Command-line scripting variable -v COLVAR= "Name" switch

SELECT $(COLVAR)

FROM Sys.Tables;

Because scripting variables are replaced in a script “wholesale,” some organizations

might consider their use a security risk because of the possibility of SQL Injection–style

attacks. The -x command-line option turns this feature off.

The SQLCMDINI scripting variable specifies the SQLCMD start-up script. This script

is run every time SQLCMD begins. The start-up script is useful for setting scripting

variables with the :setvar command, setting initial T-SQL options such as

QUOTED_IDENTIFIERS or ANSI_PADDING, and performing any necessary database tasks

before other scripts are run.

SQLCMD Commands

In addition to T-SQL statements, SQLCMD has several commands specific to the applica-

tion (see Table 2-3). Except for the batch terminator GO, all SQLCMD commands begin

with a colon (:).

CHAPTER 2 ■ TOOLS OF THE TRADE22

794Xch02final.qxd  3/29/07  4:50 PM  Page 22



Table 2-3. SQLCMD Commands

Command Description

:!! command The :!! command invokes the command shell. It executes
the specified operating system command in the command
shell.

:CONNECT server [\instance] The :CONNECT command connects to a SQL Server instance. 
[-l timeout] [-U user [-P password] ] The server name (server) and instance name (\instance) are

specified in the command. When :CONNECT is executed, the
current connection is closed. You can use the following
options with the :CONNECT command:
• The -l option specifies the login timeout (specified in 
• seconds, 0 = no timeout).
• The -U option specifies the SQL Authentication username.
• The -P option specifies the SQL Authentication password.

:ED The :ED command starts the text editor to edit the current
batch or the last executed batch. The SQLCMDEDITOR environ-
ment variable defines the application used as the SQLCMD
editor. The default is the Windows EDIT utility.

:ERROR destination The :ERROR command redirects error messages to the speci-
fied destination. Destination can be a filename, STDOUT for
standard output, or STDERR for standard error output.

:EXIT [() | (query)] The :EXIT command has three forms:
:EXIT alone immediately exits without executing the batch
and with no return code.
:EXIT() executes the current batch and exits with no return
code.
:EXIT(query) executes the batch, including the query speci-
fied, and returns the value of the first value of the first result
row of the query as a 4-byte integer to the operating system.

:HELP The help command displays a list of SQLCMD commands.

GO [n] GO is the batch terminator. The GO batch terminator executes
the statements in the cache. If n is specified, GO will execute
the statement n times.

:LIST The :LIST list command lists the contents of the current
batch of statements in the statement cache.

:LISTVAR The :LISTVAR command lists all the SQLCMD scripting vari-
ables (that have been set) and their current values.

:ON ERROR action The :ON ERROR command specifies the action SQLCMD
should take when an error is encountered. action can be one
of two values:
EXIT stops processing and exits, returning the appropriate
error code.
IGNORE disregards the error and continues processing.

Continued

CHAPTER 2 ■ TOOLS OF THE TRADE 23

794Xch02final.qxd  3/29/07  4:50 PM  Page 23



Table 2-3. Continued

Command Description

:OUT destination The :OUT command redirects output to the specified
destination. Destination can be a filename, STDOUT for stan-
dard output, or STDERR for standard error output. Output is
sent to STDOUT by default.

:PERFTRACE destination The :PERFTRACE command redirects performance trace/
timing information to the specified destination. Destination
can be a filename, STDOUT for standard output, or STDERR for
standard error output. Trace information is sent to STDOUT by
default.

:QUIT The :QUIT command quits SQLCMD immediately.

:R filename The :R command reads in the contents of the specified file
and appends to the statement cache.

:RESET The :RESET command resets/clears the statement cache.

:SERVERLIST The :SERVERLIST command lists all SQL Servers on the local
machine and servers broadcasting on the local network. If
SQLCMD doesn’t receive timely responses from all servers on
the network, some may not be listed.

:SETVAR var [value] The :SETVAR command allows you to set or remove SQLCMD
scripting variables. To remove a SQLCMD scripting variable,
use the :SETVAR var format. To set a SQLCMD scripting vari-
able to a value, use the :SETVAR var value format.

:XML ON|OFF The :XML command indicates to SQLCMD that you expect
XML output from SQL Server (that is, the SELECT statement’s
FOR XML clause). Use :XML ON before your SQL batch is run
and :XML OFF after the batch has executed (after the GO batch
terminator).

■Tip For backward compatibility with older osql scripts, you can enter the following commands without a
colon prefix: !!, ED, RESET, EXIT, and QUIT. Also, SQLCMD commands are case-insensitive, they must
appear at the beginning of a line, and they must be on their own line. A SQLCMD command cannot be fol-
lowed on the same line by a T-SQL statement or another SQLCMD command.

SQLCMD Interactive

In addition to its command-line and scripting capabilities, SQLCMD can be run inter-

actively. To start an interactive mode session, run SQLCMD with any of the previous

options that do not exit immediately on completion.

CHAPTER 2 ■ TOOLS OF THE TRADE24

794Xch02final.qxd  3/29/07  4:50 PM  Page 24



■Note SQLCMD options such as -Q, -i, -Z, and -? exit immediately on completion. You cannot start an
interactive SQLCMD session if you specify any of these command-line options.

During an interactive SQLCMD session, you can run T-SQL queries and commands

from the SQLCMD prompt. The interactive screen looks similar to Figure 2-1.

The SQLCMD prompt indicates the current line number of the batch (1> and so on).

You can enter T-SQL statements or SQLCMD commands at the prompt. T-SQL state-

ments are stored in the statement cache as they are entered; SQLCMD commands are

executed immediately. Once you have entered a complete batch of T-SQL statements,

use the GO batch terminator to process all the statements in the cache.

SQL Server Management Studio
If you’re like me, you fire up Enterprise Manager and Query Analyzer in rapid succession

whenever you sit down to write T-SQL code on SQL Server 2000. Many SQL Server devel-

opers prefer the graphical user interface (GUI) administration and development tools to

CHAPTER 2 ■ TOOLS OF THE TRADE 25

Figure 2-1. Query run from the SQLCMD interactive prompt

794Xch02final.qxd  3/29/07  4:50 PM  Page 25



osql, and on this front SQL Server 2005 doesn’t disappoint. Microsoft SQL Server

Management Studio (SSMS) was designed as an updated replacement for both Query

Analyzer and Enterprise Manager. SSMS offers several features that make development

work easier:

• Color coding of scripts

• Context-sensitive help

• Graphical query execution plans

• Project management/code versioning tools

• SQLCMD mode, which allows you to execute SQLCMD and operating system

commands

SSMS also includes database and server management features, but I’ll limit the

discussion of this section to some of the most important developer-specific features.

Figure 2-2 shows the SQL Server Management Studio interface.

CHAPTER 2 ■ TOOLS OF THE TRADE26

Figure 2-2. SQL Server Management Studio interface

794Xch02final.qxd  3/29/07  4:50 PM  Page 26



■Note As of this writing, Query Analyzer version 8.00.2039 (SQL Server 2000 Service Pack 4) can
connect to SQL Server 2005. Not all Query Analyzer features are available when connected to SQL
Server 2005, though. Earlier versions of Query Analyzer cannot connect to SQL Server 2005, and no
versions of Enterprise Manager can.

SSMS Editing Options

SSMS incorporates, and improves on, many of the developer features found in Query

Analyzer. You can change the editing options discussed in this section via the Tools ➤

Options menu.

SSMS includes improved script color coding. It allows you to customize the fore-

ground and background colors, font face, size, and style for elements of T-SQL, XML,

XSLT, and MDX scripts. Likewise, you can customize just about any feedback that SSMS

generates to suit your personal tastes.

You can customize other editing options such as word wrap, line number display,

indentation, and tabs for different file types based on file extensions. And like Query

Analyzer, you can configure your own keyboard shortcuts in SSMS to execute common

T-SQL statements or stored procedures. You can redefine Alt+F1, Ctrl+F1, and all

Ctrl+<number> combinations.

By default SSMS displays queries using a tabbed window environment. If you prefer

the Query Analyzer style of classic MDI windows, you can switch the environment layout

to use that style. You can also change the query results’ output style from the default grid

output to text or file output.

Context-Sensitive Help

To access context-sensitive help, just highlight the T-SQL or other statement you want

help with, and press F1. You can configure Help to use your locally installed copy of SQL

Server 2005 Books Online (BOL), or you can specify that Help search MSDN Online for

the most up-to-date BOL information. You can add Help pages to your Help Favorites or

go directly to the MSDN Community Forums to ask questions with the click of a button.

Help Search rounds out our discussion of the new Help functionality in SSMS. The

Help Search function automatically searches several online providers of SQL Server–

related information for answers to your questions. Your searches are not restricted to SQL

Server keywords or statements; you can search for anything at all, and the Help Search

function will scour registered websites and communities for relevant answers. Figure 2-3

shows the Help Search screen in action.

CHAPTER 2 ■ TOOLS OF THE TRADE 27

794Xch02final.qxd  3/29/07  4:50 PM  Page 27



Graphical Query Execution Plans

SSMS offers graphical query execution plans similar to the plans available in Query

Analyzer. The graphical query execution plan is an excellent tool for optimizing query

performance. SSMS allows you to view two types of graphical query execution plans:

estimated and actual. The estimated query execution plan is SQL Server’s cost-based

performance estimate of a query. The actual execution plan shows the real cost-based

performance of the execution plan selected by SQL Server when the query is run. These

options are available via the Query menu. Figure 2-4 shows an estimated query execu-

tion plan in SSMS.

CHAPTER 2 ■ TOOLS OF THE TRADE28

Figure 2-3. SSMS Help Search function

794Xch02final.qxd  3/29/07  4:50 PM  Page 28



Project Management Features

SQL Server Management Studio incorporates new project management features famil-

iar to Visual Studio developers. SSMS supports solution-based development. A solution

in SSMS consists of projects that contain T-SQL scripts, XML files, connection informa-

tion, and other files. By default, projects and solutions are saved in the My Documents\

SQL Server Management Studio\Projects directory. Solution files have the extension

.ssmssln, and project files are saved in XML format with the .smssproj extension. SSMS

incorporates a Solution Explorer window similar to Visual Studio’s Solution Explorer, as

shown in Figure 2-5. You can access it through the View menu.

CHAPTER 2 ■ TOOLS OF THE TRADE 29

Figure 2-4. Estimated query execution plan

794Xch02final.qxd  3/29/07  4:50 PM  Page 29



SSMS can take advantage of source control integration with Visual SourceSafe to

help you manage versioning and deployments. After you create a solution and add proj-

ects, connections, and SQL scripts, you can add your solution to Visual SourceSafe by

right-clicking the solution in the Solution Explorer and selecting Add Solution to Source

Control (see Figure 2-6).

SSMS has several options for checking items out from source control. You can

open a local copy and choose Check Out for Edit. You’ll find options for checking out

items from source control on the File ➤ Source Control menu. After checking out a

solution from Visual SourceSafe, a Pending Checkins window appears. The Pending

Checkins window lets you add comments to, or check in, individual files or projects,

as shown in Figure 2-7.

CHAPTER 2 ■ TOOLS OF THE TRADE30

Figure 2-5. SSMS Solution Explorer

Figure 2-6. Add Solution to Source Control command

794Xch02final.qxd  3/29/07  4:50 PM  Page 30



SQL Server 2005 Books Online
SQL Server 2005 BOL is the primary reference for T-SQL and SQL Server 2005. Updates to

your local installation of BOL are available at http://www.microsoft.com/sql/default.mspx.

The online version of BOL is available at http://msdn2.microsoft.com/en-us/library/

ms130214.aspx.

Note that you can search online and local versions of BOL, as well as several other

SQL resources, via the Help Search function discussed earlier.

AdventureWorks Sample Database
SQL Server 2005 finally puts the good old Northwind sample database to rest. SQL

Server 2005 has two main sample databases: the AdventureWorks OLTP and Adventure-

Works Data Warehouse databases. In this book, I’ll refer to the AdventureWorks OLTP

database for most samples. You can download the AdventureWorks databases and the

associated “100 SQL Server 2005 Samples” file from http://www.microsoft.com/sql/

downloads/2005/default.mspx.

CHAPTER 2 ■ TOOLS OF THE TRADE 31

Figure 2-7. SSMS solution Pending Checkins window

794Xch02final.qxd  3/29/07  4:50 PM  Page 31



Summary
This chapter discussed the primary tools available to SQL Server 2005 developers includ-

ing the following:

• The SQLCMD utility

• SQL Server Management Studio

• Books Online and the Help Search function

• The AdventureWorks sample databases

Chapter 3 will provide a survey of new SQL Server 2005 features, specifically for SQL

Server 2000 programmers.

CHAPTER 2 ■ TOOLS OF THE TRADE32

794Xch02final.qxd  3/29/07  4:50 PM  Page 32



T-SQL for SQL Server 2000
Programmers

SQL Server 2005 offers several enhancements to T-SQL, but SQL Server 2000 program-

mers will still feel right at home. As long as legacy SQL Server 2000 scripts were written to

follow best practices, most will run with minimal, if any, changes. Converting old scripts

to run on SQL Server 2005 is just a starting point. This chapter gives an overview of the

exciting new features SQL Server 2005 adds to T-SQL.

■Caution You’ll find a list of deprecated features in BOL. To locate the list, search for deprecated in BOL.
The list has deprecated features and the replacement features. Though many of these features are currently
supported in SQL Server 2005, they will be removed in a future version of the product.

New Data Types
SQL Server 2005 introduces one new and three enhanced data types: the new xml data

type and the varchar(max), nvarchar(max), and varbinary(max) enhanced data types.

The enhanced max data types are designed to replace the SQL Server 2000 large object

(LOB) data types text, ntext, and image, respectively. The new max data types operate

more like their conventional counterparts, exhibiting behavior that more closely

resembles these data types.

XML Data Type

SQL Server 2005 expands on the XML functionality introduced in SQL Server 2000 with a

new xml data type. You can use the xml data type to store and manipulate XML data. SQL

Server 2005 also provides XQuery support for querying XML data. Chapter 11 describes

33

C H A P T E R  3

794Xch03final.qxd  3/29/07  4:46 PM  Page 33



the xml data type in greater detail, along with a discussion of the improved FOR XML clause

for SQL Server 2005 SELECT statements.

varchar(max), nvarchar(max), and varbinary(max)

SQL Server 2005 also introduces enhancements to three older data types. If you’ve ever

tried to use the old text, ntext, and image large-value data types, you’ll be glad to hear

they’ve been deprecated and replaced with new, easier-to-use types. The varchar(max),

nvarchar(max), and varbinary(max) data types completely replace the older LOB data

types. Like the older types, each of these new data types can hold up to 231 minus 1 bytes

(2.1 billion bytes) of character or binary data. Unlike the old large-object data types, 

the enhanced max data types are designed to work similarly to the standard varchar,

nvarchar, and varbinary data types. This means standard string functions such as LEN and

CHARINDEX, which didn’t work with SQL Server 2000 large-object data types (or at least

didn’t work well with them), will work as expected with the enhanced max data types.

It also means that kludgy solutions involving the TEXTPTR and WRITETEXT statements are

no longer needed to manipulate large-object data. The old text, ntext, and image types

will be removed from a future version of SQL Server and should not be used in SQL

Server 2005.

■Note The varchar(max), nvarchar(max), and varbinary(max) data types replace the SQL Server
2000 text, ntext, and image data types completely. The text, ntext, and image data types and their
support functions will be removed in a future version of SQL Server. Because they are deprecated, Microsoft
recommends you avoid these older LOB data types for new development.

You can also add the .WRITE clause to UPDATE statements of the enhanced max data

types. The .WRITE clause allows optimized minimally logged updates and appends to

varchar(max), varbinary(max), and nvarchar(max) types. The format is as follows:

.WRITE (expression, @offset, @length)

To use the new .WRITE clause, just append it to the end of the column name in your

UPDATE statement. The example in Listing 3-1 uses the .WRITE clause to update a column.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS34

794Xch03final.qxd  3/29/07  4:46 PM  Page 34



Listing 3-1. Minimally Logged .WRITE Method Example

CREATE TABLE #WriteTest ([ID] INT IDENTITY(1,1) NOT NULL PRIMARY KEY,

BigText NVARCHAR(MAX) NOT NULL);

INSERT

INTO #WriteTest (BigText)

VALUES (N'Transact-SQL Rocks.');

SELECT BigText

FROM #WriteTest;

UPDATE #WriteTest

SET BigText.WRITE(N' and Rolls.', 18, 11);

SELECT BigText

FROM #WriteTest;

DROP TABLE #WriteTest;

The key to the sample is the UPDATE statement, which uses the .WRITE clause to update

the text in the table from 'Transact-SQL Rocks.' to 'Transact-SQL Rocks and Rolls.', as

shown here:

UPDATE #WriteTest

SET BigText.WRITE(N' and Rolls.', 18, 11);

You should note the following about the .WRITE clause:

• The @offset parameter is a zero-based bigint and cannot be negative. The first

character of the target string is at offset 0.

• If @offset is NULL, the expression is appended to the end of the target string; @length

is ignored in this case.

• If @length is NULL, SQL Server truncates anything past the end of the .WRITE

expression after the target string is updated. @length is a bigint and cannot be

negative.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 35

794Xch03final.qxd  3/29/07  4:46 PM  Page 35



Data Manipulation Language
SQL Server 2005 includes several DML enhancements. One of the exciting new DML

enhancements is the Common Table Expression (CTE), which allows an elegant method

of performing recursive queries.

Common Table Expressions

CTEs are an exciting addition to T-SQL. Basically, a CTE generates a temporary virtual

table, or view, that exists only during the life of a query. CTEs can help make queries

easier to read, but they also offer a powerful query recursion facility. The format for

declaring a CTE is as follows:

WITH CTE_name [ ( column_name [, ...n] ) ]

AS

( CTE_query_definition )

CTE_name is the name assigned to the CTE. It can optionally be followed by a list of

columns to be returned in parentheses. CTE_query_definition, which is the body of the

CTE, follows closely behind after the keyword AS.

Consider a recursive CTE to return the chief executive officer and everyone who

reports directly to him in the AdventureWorks organization. The CEO has no manager

(ManagerID is NULL), and his EmployeeID number is 109. With that in mind, Listing 3-2

demonstrates a simple recursive CTE.

Listing 3-2. Simple Recursive CTE

WITH OrgChart (EmployeeID, ContactID, ManagerID, Title) AS

(

SELECT EmployeeID,

ContactID,

ManagerID,

Title

FROM HumanResources.Employee

WHERE ManagerID IS NULL

UNION ALL

SELECT e.EmployeeID,

e.ContactID,

e.ManagerID,

e.Title

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS36

794Xch03final.qxd  3/29/07  4:46 PM  Page 36



FROM HumanResources.Employee e

INNER JOIN OrgChart o

ON e.ManagerID = o.EmployeeID

)

SELECT EmployeeID,

ContactID,

ManagerID,

Title

FROM OrgChart

WHERE ManagerID = 109

OR ManagerID IS NULL;

The recursive CTE query consists of three distinct parts. First up is the actual CTE,

which is enclosed in parentheses and preceded by the keyword WITH:

WITH OrgChart (EmployeeID, ContactID, ManagerID, Title) AS

(

SELECT EmployeeID,

ContactID,

ManagerID,

Title

FROM HumanResources.Employee

WHERE ManagerID IS NULL

UNION ALL

SELECT e.EmployeeID,

e.ContactID,

e.ManagerID,

e.Title

FROM HumanResources.Employee e

INNER JOIN OrgChart o

ON e.ManagerID = o.EmployeeID

)

The recursive CTE comprises two separate queries unioned together. The first query is

the anchor query, which prevents the CTE from recursively calling itself in an endless loop.

The anchor query selects the AdventureWorks CEO as the starting point for the query:

WITH OrgChart (EmployeeID, ContactID, ManagerID, Title) AS

(

SELECT EmployeeID, ContactID, ManagerID, Title

FROM HumanResources.Employee

WHERE ManagerID IS NULL

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 37

794Xch03final.qxd  3/29/07  4:46 PM  Page 37



The second query is the recursive query, which is invoked multiple times recursively.

The UNION ALL operator combines the results of the two queries:

UNION ALL

SELECT e.EmployeeID,

e.ContactID,

e.ManagerID,

e.Title

FROM HumanResources.Employee e

INNER JOIN OrgChart o

ON e.ManagerID = o.EmployeeID

)

Finally, you associate a SELECT query with the CTE by placing it just after the CTE body:

SELECT EmployeeID,

ContactID,

ManagerID,

Title

FROM OrgChart

WHERE ManagerID = 109

OR ManagerID IS NULL;

As an alternative to the WHERE clause, SQL Server 2005 offers the MAXRECURSION option.

To achieve the same results as earlier, you can remove the WHERE clause and add the

MAXRECURSION option:

SELECT EmployeeID,

ContactID,

ManagerID,

Title

FROM OrgChart

OPTION (MAXRECURSION 1);

■Note The MAXRECURSION option throws a warning message when it stops query execution. The warning
message looks like this:

Msg 530, Level 16, State 1, Line 1

The statement terminated. The maximum recursion 2 has been exhausted before

statement completion.

You can safely ignore this warning message. Also note that the value for the MAXRECURSION hint must be
from 0 to 32767. A value of 0 indicates that no limit should be applied.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS38

794Xch03final.qxd  3/29/07  4:46 PM  Page 38



This forces the CTE to recurse only once, returning the same result as earlier. The

query currently retrieves the CEO and his direct reports. If you wanted to also retrieve the

next level of employees who report to them, you could use OPTION (MAXRECURSION 2). The

hierarchical modeling of data often requires recursion, and CTEs help ease the pain of

retrieving hierarchical data via inefficient cursors and self-joins in a relational database.

OUTPUT Clause

The OUTPUT clause is a new addition to T-SQL. You can apply it to INSERT, UPDATE, and

DELETE statements. The OUTPUT clause allows you to return information from DML state-

ments that can be useful to grab the results of an insert or delete or to compare the pre-

and post-update data. The OUTPUT clause uses inserted and deleted virtual tables to refer-

ence columns inserted and deleted by the DML statement.

You can use the OUTPUT clause to output a SQL result set, like with a SELECT state-

ment, or you can combine it with the INTO clause to output to a table or table variable.

The simple example shown in Listing 3-3 inserts and deletes a new work shift into the

HumanResources.Shift table. These INSERT and DELETE statements use the OUTPUT clause to

return a summary of the changes made.

Listing 3-3. OUTPUT Clause Example

INSERT INTO HumanResources.Shift ([Name],

StartTime,

EndTime)

OUTPUT 'INSERTED',

CURRENT_USER,

INSERTED.ShiftID

SELECT 'Swing Shift', '12:00:00 PM', '8:00:00 PM';

DELETE FROM HumanResources.Shift

OUTPUT 'DELETED',

CURRENT_USER,

DELETED.ShiftID

WHERE [Name] = N'Swing Shift';

■Note If you use the OUTPUT clause in a trigger, you have to alias the trigger’s inserted and deleted
virtual tables to prevent conflicts with the OUTPUT clause’s inserted and deleted virtual tables.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 39

794Xch03final.qxd  3/29/07  4:46 PM  Page 39



INTERSECT and EXCEPT

SQL Server 2005 provides two new union-style operators, INTERSECT and EXCEPT. The

INTERSECT operator returns any distinct values that are common to the query on the left

side of the operator and also the right side of the operator.

EXCEPT returns distinct values from the query on the left side, excluding any results

that match the query on the right side. In the example shown in Listing 3-4, EXCEPT returns

all contacts whose last name begins with A except those whose last name is Adams.

Listing 3-4. EXCEPT Operator Example

SELECT ContactID,

LastName,

FirstName,

MiddleName

FROM Person.Contact

WHERE LastName LIKE N'A%'

EXCEPT

SELECT ContactID,

LastName,

FirstName,

MiddleName

FROM Person.Contact

WHERE LastName = N'Adams';

■Note The INTERSECT and EXCEPT operators eliminate duplicate rows from the result set. T-SQL does
not support the ANSI INTERSECT ALL and EXCEPT ALL variations of these operators, which do not elimi-
nate duplicate rows from the result set.

The INTERSECT and EXCEPT operators follow a specific set of rules when performing

their functions:

• When comparing rows for distinct values, NULLs are considered equal. Usually (and

for most SQL operations), NULLs are not considered equal to anything, even other

NULLs.

• The number and order of all columns on both sides of the expression have to be

the same. The data types of matching columns on both sides of the expression do

not have to be the same, but they must be compatible. In other words, they must

be able to be compared via implicit conversion.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS40

794Xch03final.qxd  3/29/07  4:46 PM  Page 40



• The columns on either side of the expression cannot be text, ntext, image, xml, or

nonbinary SQLCLR user-defined types.

• The column names returned by the operator are taken from the left side of the

operator.

• Just like with the UNION and UNION ALL operators, you can use an ORDER BY clause

only on the final result of the operator. The ORDER BY clause must reference column

names from the left side of the operator.

• You cannot use GROUP BY and HAVING clauses on the final result of the INTERSECT or

EXCEPT queries. You can use them on the individual queries on either side of the

operator, though.

TOP Keyword

The TOP keyword has long been a staple of SQL SELECT statements. With SQL Server 2005,

TOP has been considerably improved. Now you can use a T-SQL variable to specify the

number of rows to return. You can apply this to percentages or actual row counts, as

shown in Listing 3-5.

Listing 3-5. SELECT TOP with Variable

DECLARE @i INT;

SELECT @i = 20;

SELECT TOP (@i) PERCENT FirstName,

MiddleName,

LastName

FROM Person.Contact

ORDER BY FirstName,

MiddleName,

LastName;

Doing something like this in SQL Server 2000 required kludging ugly dynamic SQL or

using the SET ROWCOUNT statement. You can also use a subquery to specify the number of

rows to return. This example returns half the rows from the Person.Contact table, as

shown in Listing 3-6.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 41

794Xch03final.qxd  3/29/07  4:46 PM  Page 41



Listing 3-6. SELECT TOP with Subquery

SELECT TOP (SELECT COUNT(*) / 2 FROM Person.Contact)

FirstName,

MiddleName,

LastName

FROM Person.Contact

ORDER BY FirstName,

MiddleName,

LastName;

You can also use the TOP keyword with a constant value just like in SQL Server 2000.

Although you can leave the parentheses off when using SELECT TOP, don’t rely on this

backward-compatibility feature. With new T-SQL scripts, always use parentheses around

the expression to specify the number of rows to return.

■Note When you use a variable or subquery with SELECT TOP, you must enclose it in parentheses. For
compatibility with SQL Server 2000 scripts, the parentheses aren’t required if you specify a constant value
with SELECT TOP. This backward-compatibility feature might be removed in future versions of T-SQL, and
Microsoft now recommends always using parentheses with TOP.

The TOP keyword was not introduced to T-SQL until SQL Server 7.0. In SQL Server 7.0

and SQL Server 2000, T-SQL allowed the TOP keyword only in a SELECT statement. SQL

Server 2005 also allows the TOP keyword in the INSERT, UPDATE, and DELETE Data Manipula-

tion Language (DML) statements. One practical use for TOP with these statements is the

development of T-SQL table-based queues, stacks, lists, or other data structures. The

example in Listing 3-7 creates a simple table-based queue. It enqueues five names and

then dequeues three of them using INSERT and DELETE statements with the TOP keyword.

The OUTPUT clause discussed earlier generates instant feedback for each operation.

Listing 3-7. Using TOP with INSERT and DELETE

CREATE TABLE #Queue (

[ID] INT IDENTITY(1,1) NOT NULL PRIMARY KEY,

FirstName NVARCHAR(50) NOT NULL);

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS42

794Xch03final.qxd  3/29/07  4:46 PM  Page 42



INSERT TOP (5)

INTO #Queue (FirstName)

OUTPUT N'Enqueued: ' + INSERTED.FirstName

SELECT DISTINCT FirstName

FROM Person.Contact;

DELETE TOP (3)

FROM #Queue

OUTPUT N'De-queued: ' + DELETED.FirstName;

DROP TABLE #Queue;

This code first creates a temporary table and populates it with five names from the

Person.Contact table. Note the use of the OUTPUT clause to display a message for each

name added to the queue:

CREATE TABLE #Queue (

[ID] INT IDENTITY(1,1) NOT NULL PRIMARY KEY,

FirstName NVARCHAR(50) NOT NULL);

INSERT TOP (5)

INTO #Queue (FirstName)

OUTPUT N'Enqueued: ' + INSERTED.FirstName

SELECT DISTINCT FirstName

FROM Person.Contact;

Then it dequeues the top three names by deleting them. The OUTPUT clause again

gives feedback as each item is dequeued. Finally, the temp table is dropped:

DELETE TOP (3)

FROM #Queue

OUTPUT N'De-queued: ' + DELETED.FirstName;

DROP TABLE #Queue;

Like SELECT TOP in SQL Server 2005, the INSERT TOP, DELETE TOP, and UPDATE TOP state-

ments can all accept constants, T-SQL variables, or subqueries to specify the number of

rows to affect.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 43

794Xch03final.qxd  3/29/07  4:46 PM  Page 43



CROSS APPLY and OUTER APPLY

Probably one of the most frequently asked questions on the SQL Server newsgroups

(news://microsoft.public.sqlserver.programming) concerns passing columns as param-

eters to table-valued functions. In SQL Server 2000, this requires resorting to proce-

dural code or cursors. SQL Server 2005 adds the CROSS APPLY and OUTER APPLY operators

that resolve this problem. Like the JOIN operators, APPLY operators take tables on both

sides of the operator. The APPLY operators allow columns from the left-side table to be

used as parameters for a table-valued function (TVF) on the right side of the operator.

As a simple example, Listing 3-8 creates a sample inline TVF that returns the square

(n2) and cube (n3) of a number passed to it. The CROSS APPLY operator in the example

applies the numbers in a table to the TVF.

Listing 3-8. CROSS APPLY Example

CREATE FUNCTION dbo.fnPowers (@Num INT)

RETURNS TABLE

AS

RETURN

(

SELECT @Num * @Num AS Squared_Result,

@Num * @Num * @Num AS Cubed_Result

);

GO

CREATE TABLE #Numbers (Number INT NOT NULL PRIMARY KEY);

INSERT INTO #Numbers (Number) VALUES (1);

INSERT INTO #Numbers (Number) VALUES (2);

INSERT INTO #Numbers (Number) VALUES (3);

SELECT n.Number,

s.Squared_Result,

s.Cubed_Result

FROM #Numbers n

CROSS APPLY dbo.fnPowers (n.Number) s;

GO

DROP FUNCTION dbo.fnPowers;

DROP TABLE #Numbers;

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS44

794Xch03final.qxd  3/29/07  4:46 PM  Page 44



The sample first creates an inline table-valued function to return the square and

cube of a number passed to it:

CREATE FUNCTION dbo.fnPowers (@Num INT)

RETURNS TABLE

AS

RETURN

(

SELECT @Num * @Num AS Squared_Result,

@Num * @Num * @Num AS Cubed_Result

);

GO

Then it creates a temporary table and inserts some numbers to it:

CREATE TABLE #Numbers (Number INT NOT NULL PRIMARY KEY);

INSERT INTO #Numbers (Number) VALUES (1);

INSERT INTO #Numbers (Number) VALUES (2);

INSERT INTO #Numbers (Number) VALUES (3);

The CROSS APPLY operator used in the SELECT statement takes every row from the tem-

porary table and passes them to the inline TVF. The columns of the temporary table and

the columns returned by the inline TVF are all available to the SELECT statement:

SELECT n.Number,

s.Squared_Result,

s.Cubed_Result

FROM #Numbers n

CROSS APPLY dbo.fnPowers (n.Number) s;

GO

Finally, perform a little cleanup:

DROP FUNCTION dbo.fnPowers;

DROP TABLE #Numbers;

The CROSS APPLY operator returns every row for which the table-valued function

returns results for the left table. OUTER APPLY returns all rows, even those for which the

function returns no results. If no results are returned by the TVF for a row, OUTER APPLY

returns NULL values for the TVF columns. I discuss table-valued functions in detail in

Chapter 5.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 45

794Xch03final.qxd  3/29/07  4:46 PM  Page 45



TABLESAMPLE

Occasionally it’s necessary to select a random sample of data from a table. Many people

have come up with inventive solutions for this on the SQL Server 2000 platform, includ-

ing methods based on pregenerated random numbers, procedural code, or globally

unique identifiers (GUIDs). SQL Server 2005 includes a new TABLESAMPLE clause for the

SELECT statement to make the task of random sampling easier. The TABLESAMPLE clause

follows the table name in the WHERE clause and has the following format:

TABLESAMPLE [SYSTEM] (sample_number [PERCENT|ROWS])

REPEATABLE (repeat_seed)

TABLESAMPLE accepts a sample_number parameter that specifies a percent or number

of rows to return in the sample. The sample method actually randomly samples a per-

centage of pages, so the number of rows specified might not be the exact number or

percent requested.

■Note When you specify an exact number of rows, TABLESAMPLE converts the number to a percentage 
of rows before executing. So even if you specify an exact number of rows, you will still get an approximate
number of rows in the result set.

You can use the TOP clause in the SELECT statement to further limit rows to the exact

number required. The SYSTEM keyword specifies a system-dependent random sampling

method. Since SQL Server 2005 offers only one random sampling method, the SYSTEM

keyword has no effect. The random sampling method used by SQL Server 2005 involves

retrieving a random number of complete physical pages that make up the specified table.

This means the number of rows returned will always be approximate and that tables

occupying more storage space and containing more rows will more closely approximate

the specified TABLESAMPLE percentage. A small table that takes up only one physical page,

for instance, will return either all rows or none.

If you need to repeat the same random sampling multiple times, specify REPEATABLE

with repeat_seed, which is a random seed generation number. Specifying the same

repeat_seed with the same SELECT statement on the same data produces the same results.

■Note The REPEATABLE keyword, even with the same repeat_seed, will produce different results from
query to query if the data stored in the table, or the structure of the table, changes.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS46

794Xch03final.qxd  3/29/07  4:46 PM  Page 46



The SELECT statement shown in Listing 3-9 randomly selects approximately ten per-

cent of the rows from the Person.Contact table.

Listing 3-9. SELECT Example with TABLESAMPLE

SELECT FirstName,

MiddleName,

LastName

FROM Person.Contact

TABLESAMPLE (10 PERCENT);

■Tip TABLESAMPLE always returns an approximate number of rows because of the way it samples data.
The required percentage is the number of data pages SQL Server retrieves in full to fulfill your TABLESAMPLE
request. The number of rows returned by TABLESAMPLE will often be slightly less, or greater, than the speci-
fied amount.

You can use the TABLESAMPLE clause only when querying local tables and locally

defined temporary tables. You cannot use it on views, derived tables from subqueries,

result sets from table-valued functions and rowset functions, linked server tables,

OPENXML, or table variables.

If you need to retrieve a random sampling of rows from a view, derived table, or

linked server table, consider using a method like the following, popularized by SQL

Server MVP Erland Sommerskag, as shown in Listing 3-10.

Listing 3-10. Alternate Method of Retrieving Random Rows from a Table

SELECT TOP (10) PERCENT FirstName,

MiddleName,

LastName

FROM HumanResources.vEmployee

ORDER BY NEWID();

This method works by generating a UNIQUEIDENTIFIER for each row, sorting based on

the value generated, and selecting the top ten percent from that result. The result is a

random sample of rows from your table. Although not a true statistical sampling, these

random sampling methods are adequate for most development and testing purposes.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 47

794Xch03final.qxd  3/29/07  4:46 PM  Page 47



PIVOT and UNPIVOT

Microsoft Access database users, and even Microsoft Excel spreadsheet users, have long

had the ability to generate pivot table reports of their data. Prior to SQL Server 2005, SQL

Server users had to use CASE statements and/or dynamic SQL to simulate this functional-

ity. SQL Server 2005 introduces the PIVOT and UNPIVOT operators to generate pivot

table–style reports.

The PIVOT operator turns the values of a specified column into column names,

effectively rotating a table. You can use PIVOT to sum, count, or otherwise aggregate the

values of columns it creates. The PIVOT query shown in Listing 3-11 returns the total

number of AdventureWorks customers who live in California, Massachusetts, Texas,

and Washington.

Listing 3-11. PIVOT Operator Test

SELECT [CA],

[MA],

[TX],

[WA]

FROM

(

SELECT sp.StateProvinceCode

FROM Sales.CustomerAddress c

INNER JOIN Person.Address a

ON c.AddressID = a.AddressID

INNER JOIN Person.StateProvince sp

ON a.StateProvinceID = sp.StateProvinceID

) p

PIVOT

(

COUNT (StateProvinceCode)

FOR StateProvinceCode

IN ([CA], [MA], [TX], [WA])

) AS pvt;

The first part of the SELECT statement specifies the column names. In this case, the

abbreviation codes for the states to include in the result set are as follows:

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS48

794Xch03final.qxd  3/29/07  4:46 PM  Page 48



SELECT [CA],

[MA],

[TX],

[WA]

FROM

The subquery retrieves all the state codes for AdventureWorks customers:

(

SELECT sp.StateProvinceCode

FROM Sales.CustomerAddress c

INNER JOIN Person.Address a

ON c.AddressID = a.AddressID

INNER JOIN Person.StateProvince sp

ON a.StateProvinceID = sp.StateProvinceID

) p

The PIVOT operator applies the aggregate COUNT function to each state code and limits

the results to the specified states:

PIVOT

(

COUNT (StateProvinceCode)

FOR StateProvinceCode

IN ([CA], [MA], [TX], [WA])

) AS pvt;

The result is a pivot-style table (see Figure 3-1).

One glaring shortcoming of the PIVOT operator is that you must specify the names of

all the columns to be included in the result set. If you want the columns to be dynami-

cally created based on the contents of a column, you’ll have to resort to the old-fashioned

method of building dynamic SQL statements.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 49

Figure 3-1. PIVOT query result

794Xch03final.qxd  3/29/07  4:46 PM  Page 49



The UNPIVOT operator performs almost—but not exactly—the opposite function of

the PIVOT operator. Since PIVOT aggregates results, the original nonaggregated values can-

not be returned by UNPIVOT.

Listing 3-12 creates a temporary table containing the results of the previous PIVOT

example; it then unpivots the result by rotating the column names into row data.

Listing 3-12. PIVOT and UNPIVOT Sample

CREATE TABLE #Pvt ([CA] INT NOT NULL,

[MA] INT NOT NULL,

[TX] INT NOT NULL,

[WA] INT NOT NULL,

PRIMARY KEY ([CA], [MA], [TX], [WA]));

INSERT INTO #Pvt ([CA], [MA], [TX], [WA])

SELECT [CA],

[MA],

[TX],

[WA]

FROM

(

SELECT sp.StateProvinceCode

FROM Sales.CustomerAddress c

INNER JOIN Person.Address a

ON c.AddressID = a.AddressID

INNER JOIN Person.StateProvince sp

ON a.StateProvinceID = sp.StateProvinceID

) p

PIVOT

(

COUNT (StateProvinceCode)

FOR StateProvinceCode

IN ([CA], [MA], [TX], [WA])

) AS pvt;

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS50

794Xch03final.qxd  3/29/07  4:46 PM  Page 50



SELECT StateProvinceCode, Customer_Count

FROM

(

SELECT [CA],

[MA],

[TX],

[WA]

FROM #Pvt

) t

UNPIVOT

(

Customer_Count

FOR StateProvinceCode

IN  ([CA], [MA], [TX], [WA])

) AS unpvt;

DROP TABLE #Pvt;

The first part of this script creates a temporary table and populates it with the results

of the pivot query from the previous example:

CREATE TABLE #Pvt ([CA] INT NOT NULL,

[MA] INT NOT NULL,

[TX] INT NOT NULL,

[WA] INT NOT NULL,

PRIMARY KEY ([CA], [MA], [TX], [WA]));

INSERT INTO #Pvt ([CA], [MA], [TX], [WA])

SELECT [CA],

[MA],

[TX],

[WA]

FROM

(

SELECT sp.StateProvinceCode

FROM Sales.CustomerAddress c

INNER JOIN Person.Address a

ON c.AddressID = a.AddressID

INNER JOIN Person.StateProvince sp

ON a.StateProvinceID = sp.StateProvinceID

) p

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 51

794Xch03final.qxd  3/29/07  4:46 PM  Page 51



PIVOT

(

COUNT (StateProvinceCode)

FOR StateProvinceCode

IN ([CA], [MA], [TX], [WA])

) AS pvt;

The SELECT portion of the UNPIVOT query defines the columns that will hold the results

of the unpivot operation, StateProvinceCode, and Customer_Count:

SELECT StateProvinceCode, Customer_Count

FROM

The subquery selects all applicable columns from the pivot table:

(

SELECT [CA],

[MA],

[TX],

[WA]

FROM #Pvt

) t

The UNPIVOT operator then rotates the results:

UNPIVOT

(

Customer_Count

FOR StateProvinceCode

IN ([CA], [MA], [TX], [WA])

) AS unpvt;

DROP TABLE #Temp;

Figure 3-2 shows the result of the UNPIVOT operation.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS52

Figure 3-2. UNPIVOT query result

794Xch03final.qxd  3/29/07  4:46 PM  Page 52



Ranking Functions

SQL Server 2005 introduces several new functions to allow the dynamic ranking of

results. The ROW_NUMBER function numbers all rows in a result set, the RANK and DENSE_RANK

functions assign a numeric rank value to each row in a result set, and NTILE assigns an

n-tile ranking, such as quartile (quarters or 1/4) or quintile (fifths or 1/5) to a result set.

ROW_NUMBER Function

You can use ROW_NUMBER to make light work of paging applications, such as front-end web

applications that need to retrieve data ten items at a time. ROW_NUMBER has the following

format:

ROW_NUMBER() OVER ([PARTITION BY col [,...]] ORDER BY col [,...])

The query shown in Listing 3-13 returns ten names from the Person.Contact table

beginning at the specified row number.

Listing 3-13. ROW_NUMBER Function Example

DECLARE @start INT;

SELECT @start = 10;

WITH PageContacts AS

(

SELECT ROW_NUMBER() OVER

(

ORDER BY LastName,

FirstName,

MiddleName

)

AS PosNo, FirstName, MiddleName, LastName

FROM Person.Contact

)

SELECT PosNo, FirstName, MiddleName, LastName

FROM PageContacts

WHERE PosNo BETWEEN @start AND @start + 9;

The script begins by defining the start position as the tenth row in the result set:

DECLARE @start INT;

SELECT @start = 10;

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 53

794Xch03final.qxd  3/29/07  4:46 PM  Page 53



To use the ROW_NUMBER function to limit the result set to the ten rows beginning at the

start position, the sample uses a CTE to wrap the ROW_NUMBER–generating query:

WITH PageContacts AS

(

SELECT ROW_NUMBER() OVER

(

ORDER BY LastName,

FirstName,

MiddleName

)

AS PosNo, FirstName, MiddleName, LastName

FROM Person.Contact

)

SQL, and consequently T-SQL, has absolutely no concept of guaranteed row order

without an ORDER BY clause. The OVER keyword provides the mandatory ORDER BY clause to

guarantee this proper row numbering order. The final step is to select the columns from

the CTE and use the BETWEEN operator to limit the result set to ten rows:

SELECT PosNo,

FirstName,

MiddleName,

LastName

FROM PageContacts

WHERE PosNo BETWEEN @start AND @start + 9;

In addition to the ORDER BY clause, the OVER keyword provides an optional PARTITION

BY clause that allows you to divide data into numbered subsets. Taking the previous CTE

as a starting point, you can modify it to include a PARTITION BY clause. Listing 3-14

partitions/divides the data by last name and restarts the count at 1 for each new last

name.

Listing 3-14. ROW_NUMBER with PARTITION BY Clause

DECLARE @start INT;

SELECT @start = 10;

WITH PageContacts AS

(

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS54

794Xch03final.qxd  3/29/07  4:46 PM  Page 54



SELECT ROW_NUMBER() OVER

(

PARTITION BY LastName

ORDER BY LastName,

FirstName,

MiddleName

)

AS PosNo, FirstName, MiddleName, LastName

FROM Person.Contact

)

SELECT PosNo, FirstName, MiddleName, LastName

FROM PageContacts

WHERE PosNo BETWEEN @start AND @start + 9;

The PARTITION BY clause in this example forces the numbering of rows to restart at 1

every time LastName changes.

RANK and DENSE_RANK Functions

The RANK and DENSE_RANK functions are similar to one another. They assign a numeric rank

value to each item encountered. RANK and DENSE_RANK have the following formats:

RANK() OVER ([PARTITION BY col [,...]] ORDER BY col [,...])

DENSE_RANK() OVER ([PARTITION BY col [,...]] ORDER BY col [,...])

Suppose you want to figure out AdventureWorks’s best one-day sales dates for the

calendar year 2001. RANK can easily give you that information, as shown in Listing 3-15.

Listing 3-15. One-Day Sales with RANK

WITH TotalSalesBySalesDate (TotalSales, OrderDate)

AS

(

SELECT SUM(soh.SubTotal) AS TotalSales, soh.OrderDate

FROM Sales.SalesOrderHeader soh

WHERE soh.OrderDate >= '2001-01-01'

AND soh.OrderDate < '2002-01-01'

GROUP BY soh.OrderDate

)

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 55

794Xch03final.qxd  3/29/07  4:46 PM  Page 55



SELECT RANK() OVER

(

ORDER BY TotalSales DESC

)

AS 'Rank', TotalSales, OrderDate

FROM TotalSalesBySalesDate;

This query begins by creating a CTE to calculate the total sales for 2001:

WITH TotalSalesBySalesDate (TotalSales, OrderDate)

AS

(

SELECT SUM(soh.SubTotal) AS TotalSales, soh.OrderDate

FROM Sales.SalesOrderHeader soh

WHERE soh.OrderDate >= '2001-01-01'

AND soh.OrderDate < '2002-01-01'

GROUP BY soh.OrderDate

)

The query then ranks the results of the CTE in descending order so that the largest

sales days are ranked first:

SELECT RANK() OVER

(

ORDER BY TotalSales DESC

)

AS 'Rank', TotalSales, OrderDate

FROM TotalSalesBySalesDate;

Like with the ROW_NUMBER function, you can add a PARTITION BY clause if you want to

partition the results. If RANK encounters two equal TotalSales in the previous example, it

assigns the same rank number to both and skips the next number in the ranking. In the

previous example, the TotalSales value $35,782.70 occurs twice and is given the rank of

14 both times. There is no rank 15 in the result set—RANK skips it because of the duplicate

values at rank 14.

DENSE_RANK, like RANK, assigns duplicate values the same rank but with one important

difference: it does not skip the next ranking in the list. If you change the RANK function in

Listing 3-15 to DENSE_RANK, the rank of 14 is still occupied by two occurrences of

$35,782.70, but rank 15 is not skipped by DENSE_RANK, as it was with RANK.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS56

794Xch03final.qxd  3/29/07  4:46 PM  Page 56



NTILE Function

NTILE is another ranking function that performs a slightly different mission. It divides

a result set up into approximate n-tiles. An n-tile can be a quartile (1/4th, or 25 percent

slices), a quintile (1/5th, or 20 percent slices), a percentile (1/100th, or 1 percent slices),

or just about any other fractional slices you can imagine. The reason your result set is

divided into “approximate” n-tiles is that the number of rows returned might not be

evenly divisible into the specified number of groups. A table with 27 rows, for instance,

is not evenly divisible into quartiles or quintiles. When you query a table with the NTILE

function and the number of rows is not evenly divisible by the specified number of

groups, NTILE creates groups of two different sizes. The larger groups will all be one row

larger than the smaller groups, and the larger groups are numbered first. In the example

of 27 rows divided into quintiles (1/5th), the first two groups will have six rows each, and

the last three groups will have five rows each.

The format for NTILE is as follows:

NTILE (num_groups) OVER ([PARTITION BY col [,...]] ORDER BY col [,...])

Like the ROW_NUMBER function, you can include a PARTITION BY clause and an ORDER BY

clause after the OVER keyword. NTILE requires the additional num_groups parameter, speci-

fying the many groups into which to divide your results.

You can modify the previous example to use NTILE to divide the results into quartiles

representing four groups, from the highest 25 percent one-day sales totals to the lowest

25 percent one-day sales totals, as shown in Listing 3-16. Each group is numbered from

1 to 4, respectively.

Listing 3-16. NTILE Example

WITH TotalSalesBySalesDate (TotalSales, OrderDate)

AS

(

SELECT SUM(soh.SubTotal) AS TotalSales, soh.OrderDate

FROM Sales.SalesOrderHeader soh

WHERE soh.OrderDate >= '2001-01-01'

AND soh.OrderDate < '2002-01-01'

GROUP BY soh.OrderDate

)

SELECT NTILE(4) OVER

(

ORDER BY TotalSales DESC

)

AS 'Rank', TotalSales, OrderDate

FROM TotalSalesBySalesDate;

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 57

794Xch03final.qxd  3/29/07  4:46 PM  Page 57



NEWSEQUENTIALID Function

The new NEWSEQUENTIALID function generates GUIDs of T-SQL data type uniqueidentifier.

It generates sequential GUIDs in increasing order. You can use the NEWSEQUENTIALID func-

tion only as a DEFAULT for a uniqueidentifier-type column of a table, as demonstrated in

Listing 3-17.

Listing 3-17. NEWSEQUENTIALID Usage Example

CREATE TABLE #TestSeqID ([ID] UNIQUEIDENTIFIER

DEFAULT NEWSEQUENTIALID() PRIMARY KEY NOT NULL,

Num INT NOT NULL);

INSERT INTO #TestSeqID (Num) VALUES (1);

INSERT INTO #TestSeqID (Num) VALUES (2);

INSERT INTO #TestSeqID (Num) VALUES (3);

SELECT [ID], Num

FROM #TestSeqID;

DROP TABLE #TestSeqID;

The sample in Listing 3-17 generates results like the following (note that the GUIDs

generated will be different on different systems):

ID Num

A4A31F1A-BB4A-DB11-B87E-000FEAE3D7BB 1

A5A31F1A-BB4A-DB11-B87E-000FEAE3D7BB 2

A6A31F1A-BB4A-DB11-B87E-000FEAE3D7BB 3

Notice the bold first byte of each GUID, representing the sequentially increasing

GUIDs generated by NEWSEQUENTIALID with each INSERT statement.

Synonyms

Synonyms provide a handy way to alias database objects. This can help make code easier

to read and reduce the number of keystrokes while coding. You create synonyms with the

following syntax:

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS58

794Xch03final.qxd  3/29/07  4:46 PM  Page 58



CREATE SYNONYM [ syn_schema. ] synonym_name

FOR

{

[ server_name.] [ database_name. ] [ obj_schema. ] object_name

};

In the syntax definition, syn_schema is the name of the schema in which to create the

synonym. Synonym_name is the T-SQL identifier for the synonym. You specify the (up to)

four-part name of the object to create a synonym for with server_name, database_name,

obj_schema, and object_name. Note that four-part names are not supported for function

objects.

You can drop synonyms with the DROP SYNONYM syntax:

DROP SYNONYM [ schema. ] synonym_name;

Also note that synonyms use late binding so that the object a synonym references

does not have to exist at creation time. Listing 3-18 demonstrates how to use a synonym

to reference an existing table in the AdventureWorks database.

Listing 3-18. Creating a Synonym for AdventureWorks.Sales.Customer

CREATE SYNONYM AWCust

FOR AdventureWorks.Sales.Customer;

SELECT CustomerID,

AccountNumber

FROM AWCust;

DROP SYNONYM AWCust;

The OVER Clause

As previously discussed, the new ranking functions (ROW_NUMBER, RANK, and so on) all

work with the OVER clause to define the order and grouping of the input rows via the

ORDER BY and PARTITION BY clauses. The OVER clause also provides windowing function-

ality to T-SQL aggregate functions such as SUM and COUNT. The OVER clause allows T-SQL

to apply the aggregate function to a window, or subset, of the data at a time. For

instance, you can apply the OVER clause to the Purchasing.PurchaseOrderDetails table in

the AdventureWorks database to retrieve the SUM of the quantities of products ordered,

partitioned by ProductId, using the sample query in Listing 3-19.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 59

794Xch03final.qxd  3/29/07  4:46 PM  Page 59



Listing 3-19. OVER Clause Example

SELECT PurchaseOrderID,

ProductID,

SUM(OrderQty) OVER (PARTITION BY ProductId) AS TotalOrderQty

FROM Purchasing.PurchaseOrderDetail

■Tip When used with an aggregate function, such as SUM or COUNT, or with a user-defined aggregate, the
OVER clause can accept a PARTITION BY clause but not an ORDER BY clause.

This query results in a listing of products, the purchase order ID numbers, and the

total quantity of each product. The results look similar to this (only a small sample of the

results appears here):

PurchaseOrderID ProductID TotalOrderQty

...

3852            1         154

3931            1         154

79 2 150

158             2         150

...

Notice that the result of the aggregate function is returned on every row of the result

set. In the example given, for instance, a total quantity of 154 of ProductID 1 was ordered.

The OVER clause is partitioned by ProductID, so the total quantity of each product is

returned on every line. So, every line in the results for ProductID 1 lists the total quantity

of 154, and every line in the results for ProductID 2 lists the total quantity of 150. You can

achieve the same result via an INNER JOIN and a subquery, as shown in Listing 3-20.

Listing 3-20. INNER JOIN with Aggregate Function in Subquery

SELECT pod.PurchaseOrderID, pod.ProductID, pqty.TotalOrderQty

FROM Purchasing.PurchaseOrderDetail pod

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS60

794Xch03final.qxd  3/29/07  4:46 PM  Page 60



INNER JOIN (

SELECT ProductID, SUM(OrderQty) AS TotalOrderQty

FROM Purchasing.PurchaseOrderDetail

GROUP BY ProductID

) pqty

ON pod.ProductID = pqty.ProductID

You can use the OVER clause with SQLCLR user-defined aggregates as well.

Other New Features

SQL Server 2005 includes the vast majority of the functionality provided by SQL

Server 2000, with several new features as well as enhancements to existing features. You

can expect most SQL Server 2000 T-SQL scripts to run on SQL Server 2005 with little or no

change, as long as they are “well-written” (see the following tip for more information). In

addition to the features listed in this chapter, SQL Server 2005 includes new functionality

encompassing encryption, queues, web services, XML, SQLCLR, and several other func-

tional areas that are covered in later chapters.

■Tip How hard will it be to convert your existing SQL Server 2000 scripts to SQL Server 2005? That
depends on how closely those scripts followed best practices when they were originally written. For exam-
ple, scripts that rely heavily on undocumented system functions and stored procedures will likely fail
outright. Other scripts that rely on undocumented or deprecated features, old-style JOIN operators (*=, =*),
or nonstandard settings (such as SET ANSI_NULLS OFF, and so on) may return incorrect results or cause
your scripts to fail outright. Additionally, scripts that extensively use dynamic SQL will be harder to trou-
bleshoot and debug during the upgrade process. Be sure to make time to review existing scripts for
compliance during the upgrade. A little preparation can save a lot of time and trouble during the process.

Summary
This chapter provided an overview of many of SQL Server 2005’s new features for SQL

Server 2000 developers in the process of upgrading. These new features include the

following:

• The new and enhanced xml, varchar(max), nvarchar(max), and varbinary(max) data

types

• Ranking functions including ROW_NUMBER, RANK, DENSE_RANK, and NTILE

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS 61

794Xch03final.qxd  3/29/07  4:46 PM  Page 61



• New operators including INTERSECT, EXCEPT, PIVOT, and UNPIVOT

• The new concept of T-SQL synonyms

• The NEWSEQUENTIALID function, which assigns GUIDs to an IDENTITY column of

a table in sequential order

• The new OVER clause for aggregate functions

• Improvements to existing T-SQL DML statements such as the OUTPUT clause,

the enhanced TOP keyword, CTEs, and the .WRITE clause

In Chapter 4, I will cover T-SQL control-of-flow language statements and begin to lay

the groundwork for a detailed discussion of SQL Server 2005 stored procedures, user-

defined functions, and triggers.

CHAPTER 3 ■ T-SQL FOR SQL SERVER 2000 PROGRAMMERS62

794Xch03final.qxd  3/29/07  4:46 PM  Page 62



Control-of-Flow and
CASE Expressions

T-SQL has always included additional control-of-flow statements useful for writing

procedural code. SQL employs a peculiar three-valued logic that is different from most

other programming languages’ Boolean logic. I begin this chapter with a discussion of

SQL three-valued logic, then I move on to the IF...ELSE, WHILE, and other T-SQL control-

of-flow constructs, and finish up with a discussion of CASE expressions and CASE-derived

functions.

Three-Valued Logic
SQL Server 2005, like all ANSI-compatible SQL database management products, imple-

ments a peculiar form of logic known as three-valued logic (3VL). Three-valued logic is

necessary because SQL introduces the concept of NULL to indicate that values are not

known at the time they are stored in the database. Because NULL represents unknown

values, comparing anything with NULL produces an UNKNOWN result.

Table 4-1 is a quick reference for SQL Server three-valued logic, where p and q

represent Boolean values.

Table 4-1. SQL Server Three-Valued Logic Table

p q p AND q p OR q

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE UNKNOWN UNKNOWN TRUE

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

Continued

63

C H A P T E R  4

794Xch04final.qxd  3/29/07  4:45 PM  Page 63



Table 4-1. Continued

p q p AND q p OR q

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

p NOT p

TRUE FALSE

FALSE TRUE

UNKNOWN UNKNOWN

As mentioned previously, comparisons with NULL produce an UNKNOWN result. NULLs are

not even equal to other NULLs, and a comparison of two NULLs produces an unknown result

when using the standard comparison operators (<, =, >, etc.) The only ANSI-compliant way

to test for a NULL is with the IS NULL and IS NOT NULL comparison predicates.

Control-of-Flow Statements
T-SQL implements procedural language control-of-flow statements including

BEGIN...END, IF...ELSE, WHILE, and GOTO statements. T-SQL’s control-of-flow statements

provide a framework for developing rich server-side procedural code. This section dis-

cusses T-SQL’s control-of-flow statements as well as the set-based CASE expression.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS64

NULL and UNKNOWN are closely related concepts in SQL. It is important, however, to differentiate the
two: as mentioned previously NULL is a value that is not known, and an UNKNOWN result is the result of
a comparison or operation with NULL. As with most things there are exceptions to the rule: the GROUP
BY function treats all NULLs as equivalent by grouping them together in the result set. Additionally the
OVER clause, when used with ranking/windowing functions, treats all NULLs as a single window. See
Chapter 3 for more information on the OVER clause and ranking/windowing functions such as RANK and
ROW_NUMBER.

Also keep in mind that NULL requires special handling in almost every situation. Most of the built-
in SQL aggregate functions, such as SUM and COUNT, specifically eliminate NULLs during processing
(COUNT(*) is an exception). Keep this in mind when using the built-in aggregate functions or creating
your own user-defined functions or aggregates.

794Xch04final.qxd  3/29/07  4:45 PM  Page 64



The following is a list of the T-SQL control-of-flow statements:

• BEGIN...END

• IF...ELSE

• WHILE

• GOTO

• BREAK

• CONTINUE

• WAITFOR

• RETURN

• TRY...CATCH

BEGIN…END Keywords

T-SQL uses the keywords BEGIN and END to group multiple statements together in a

statement block. The BEGIN and END keywords don’t alter execution order of the state-

ments they contain, nor do they define an atomic transaction or perform any function

other than defining a logical grouping of T-SQL statements. The format of BEGIN...END

is the following:

BEGIN

{ SQL statement | statement block }

END

Unlike other languages, such as C++ or C#, which use braces ({ }) to group state-

ments in logical blocks, T-SQL’s BEGIN and END keywords do not define or limit scope.

The following sample C++ code will not even compile:

{

int j = 10;

}

std::cout << j << "\n";

C++ programmers will automatically recognize that the variable j in the previous code

is defined inside braces, limiting its scope and making it accessible only inside the braces.

T-SQL’s roughly equivalent code, however, does not have the same scope definition:

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 65

794Xch04final.qxd  3/29/07  4:45 PM  Page 65



BEGIN

DECLARE @j INT;

SELECT @j = 10;

END

PRINT @j;

The previous T-SQL code executes with no problem, as long as the DECLARE statement

is encountered before the variable is referenced, as in the PRINT statement. The scope of

variables in T-SQL is defined in terms of command batches and database object defini-

tions (such as stored procedures, user-defined functions, and triggers.) Declaring two or

more variables with the same name in one batch or stored procedure will result in errors.

■Caution T-SQL’s BEGIN...END keywords create a statement block but do not define a scope. Variables
declared inside a BEGIN...END block are not limited in scope just to that block, but rather are scoped to the
whole batch, stored procedure, or UDF in which they are defined.

IF…ELSE Statement

Like many other procedural languages, T-SQL implements conditional execution of code

using the basic procedural IF...ELSE control-of-flow statement. The basic format of the

IF...ELSE statement is the following:

IF Boolean expression

{ SQL statement | statement block }

[ ELSE

{ SQL statement | statement block } ]

If the Boolean expression returns TRUE, the SQL statement or statement block immedi-

ately following the IF statement is executed. Otherwise, SQL Server falls through to the

ELSE statement. The ELSE statement is executed if the Boolean expression returns FALSE or

UNKNOWN.

The example in Listing 4-1 performs up to three comparisons to determine whether

a variable is equal to a specified value. Note the second ELSE statement that executes only

if the tests for both TRUE and FALSE conditions fail.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS66

794Xch04final.qxd  3/29/07  4:45 PM  Page 66



Listing 4-1. Simple IF…ELSE Example

DECLARE @i INT;

SELECT @i = NULL;

IF @i = 10

PRINT 'THE RESULT OF THE COMPARISON IS TRUE.';

ELSE IF NOT (@i = 10)

PRINT 'THE RESULT OF THE COMPARISON IS FALSE.';

ELSE

PRINT 'THE RESULT OF THE COMPARISON IS UNKNOWN.';

Because the variable @i is NULL in the sample, SQL Server reports the result is UNKNOWN.

If we assign the value 10 to @i, SQL Server will report the result is TRUE; other values will

report the result is FALSE.

To create a statement block containing multiple T-SQL statements, wrap your state-

ments in the T-SQL BEGIN and END keywords discussed previously. The following simple

example of an IF...ELSE statement with statement blocks checks the variable @direction.

If @direction is TOP, a message is printed and the top 100 names, in order of last name, are

selected from the Person.Contact table. If @direction is not TOP, a different message is

printed and the bottom 100 names are selected from the Person.Contact table, as shown

in Listing 4-2.

Listing 4-2. IF…ELSE with Statement Blocks

DECLARE @direction NVARCHAR(6);

SELECT @direction = N'BOTTOM';

IF @direction = N'TOP'

BEGIN

PRINT 'Start at the top!';

SELECT TOP 100 FirstName,

MiddleName,

LastName

FROM Person.Contact

ORDER BY LastName ASC;

END

ELSE

BEGIN

PRINT 'Start at the bottom!';

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 67

794Xch04final.qxd  3/29/07  4:45 PM  Page 67



SELECT TOP 100 FirstName,

MiddleName,

LastName

FROM Person.Contact

ORDER BY LastName DESC;

END;

WHILE, BREAK, and CONTINUE Statements

T-SQL provides looping via the WHILE statement, and the associated BREAK and CONTINUE

statements. The format for WHILE is the following:

WHILE Boolean expression

{ SQL statement | statement block }

The WHILE loop executes the SQL statement or statement block bounded by the BEGIN

and END keywords as long as the Boolean expression evaluates to TRUE. If the expression

evaluates to FALSE or UNKNOWN, the code in the WHILE loop does not execute and control

moves to the next statement after the WHILE loop’s SQL statement. The example WHILE loop

in Listing 4-3 counts from one to ten.

Listing 4-3. WHILE Statement Example

DECLARE @i INT;

SELECT @i = 1;

WHILE @i <= 10

BEGIN

PRINT @i;

SELECT @i = @i + 1;

END

■Tip Be sure to update your counter or other flag inside the WHILE loop. The WHILE loop will not exit until
the Boolean expression evaluates to TRUE, and a mistake could create a nasty infinite loop.

T-SQL also has two additional keywords that can be used with the WHILE statement:

BREAK and CONTINUE. The CONTINUE keyword forces the WHILE loop to restart, as in the modi-

fied example in Listing 4-4.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS68

794Xch04final.qxd  3/29/07  4:45 PM  Page 68



Listing 4-4. WHILE…CONTINUE Example

DECLARE @i INT;

SELECT @i = 1;

WHILE @i <= 10

BEGIN

PRINT @i;

SELECT @i = @i + 1;

CONTINUE; -- Force the WHILE loop to restart

PRINT 'The CONTINUE keyword ensures that this will never be printed.';

END

The BREAK keyword, on the other hand, forces the WHILE loop to terminate. In

Listing 4-5, BREAK forces the WHILE loop to exit during the first iteration:

Listing 4-5. WHILE…BREAK Example

DECLARE @i INT;

SELECT @i = 1;

WHILE @i <= 10

BEGIN

PRINT @i;

SELECT @i = @i + 1;

BREAK; -- Force the WHILE loop to terminate

PRINT 'The BREAK keyword ensures that this will never be printed.';

END

■Tip BREAK and CONTINUE can and should be avoided in most cases. Most of the time the BREAK and
CONTINUE keywords introduce additional complexity to your logic, causing more problems than they solve.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 69

794Xch04final.qxd  3/29/07  4:45 PM  Page 69



GOTO Statement

T-SQL also has a GOTO statement. The GOTO statement unconditionally transfers control of

your program to a specified label. The format is the following:

GOTO label

Labels are defined by placing the label identifier on a line followed by a colon (:), as

in the example in Listing 4-6.

Listing 4-6. Simple GOTO Example

PRINT 'Step 1 Complete.';

GOTO Step3_Label;

PRINT 'Step 2 will not be printed.';

Step3_Label:

PRINT 'Step 3 Complete.';

The GOTO statement is best avoided, since it can quickly degenerate your programs

into unstructured “spaghetti code.” Instead of GOTO, use IF...ELSE and WHILE statements.

WAITFOR Statement

The WAITFOR statement suspends execution of a transaction, stored procedure, or T-SQL

command batch until a specified time is reached, a time interval is elapsed, or a message

is received from Service Broker, a SQL Server messaging system that is not covered in this

book. The basic format for WAITFOR is the following:

WAITFOR  { DELAY 'time_to_pass' | TIME 'time_to_execute' }

With the WAITFOR statement you can specify that SQL Server block the execution of

your transaction, stored procedure, or T-SQL command batch until one of the following

criteria is met:

• If the DELAY keyword is specified, SQL Server will wait until the interval time_to_pass

has elapsed. Time_to_pass is specified as a valid time string, in the format hh:mm:ss.

Time_to_pass cannot contain a date; it must only include the time. Time_to_pass can

be up to 24 hours.

• If the TIME keyword is used, SQL Server will wait until the appointed time before

allowing execution to continue. Datetime variables are allowed, but the date por-

tion is ignored when the TIME keyword is used.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS70

794Xch04final.qxd  3/29/07  4:45 PM  Page 70



The example of WAITFOR with DELAY in Listing 4-7 blocks execution of the T-SQL com-

mand batch for three seconds.

Listing 4-7. WAITFOR Example

PRINT 'Step 1 complete. ';

GO

DECLARE @time_to_pass NVARCHAR(8);

SELECT @time_to_pass = N'00:00:03';

WAITFOR DELAY @time_to_pass;

PRINT 'Step 2 completed three seconds later. ';

■Note SQL Server assigns each WAITFOR statement its own thread. If SQL Server determines that it is
experiencing thread starvation, it can randomly select WAITFOR threads to exit to free up thread resources.

Additionally, if your application is Service Broker-enabled, you can use WAITFOR with a

RECEIVE or GET CONVERSATION GROUP statement. The format for WAITFOR with RECEIVE is the

following:

WAITFOR ( RECEIVE [ TOP ( n ) ] column [ ,...n ]

FROM queue

[ INTO table_variable ]

[ WHERE { conversation_handle = conversation_handle

| conversation_group_id = conversation_group_id } ] )

[ , TIMEOUT timeout ]

The RECEIVE statement, when used with WAITFOR, waits for receipt of one or more

messages from the specified queue. TIMEOUT can be used to set the command timeout, the

length of time WAITFOR should wait for a message from the queue. If TIMEOUT is not speci-

fied, or is set to -1, the timeout is unlimited.

The format for WAITFOR with the GET CONVERSATION GROUP statement is the following:

WAITFOR ( GET CONVERSATION GROUP @conversation_group_id

FROM queue )

[ , TIMEOUT timeout ]

When WAITFOR is used with GET CONVERSATION GROUP it waits for a conversation group

identifier of a message. GET CONVERSATION GROUP allows you to retrieve information about

a message and lock the conversation group for the conversation containing the message

before retrieving the actual message.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 71

794Xch04final.qxd  3/29/07  4:45 PM  Page 71



■Note The TIMEOUT keyword can only be used by WAITFOR when used with the RECEIVE or 
GET CONVERSATION GROUP statements.

A detailed description of Service Broker is beyond the scope of this book, but the

Apress book Pro SQL Server 2005 (ISBN: 1-59059-477-0) by Thomas Rizzo, et al., gives a

good description of Service Broker functionality and options for SQL Server 2005.

RETURN Statement

The RETURN statement exits unconditionally from a stored procedure or command batch.

The format is the following:

RETURN [ integer expression ]

The RETURN statement returns the integer expression to the calling routine or

batch. If integer expression is not specified, a default value of 0 is returned. RETURN is

not normally used to return calculated results, except for UDFs, which offer more

RETURN options described in detail in Chapter 5. For stored procedures and command

batches the RETURN statement is usually used only to return a success or failure indica-

tor or error code.

■Note All system stored procedures return zero to indicate success, or a nonzero value to indicate failure
(unless otherwise documented). It is considered bad form to use the RETURN statement to return anything
other than an integer status code from a script or stored procedure.

User-defined functions, on the other hand, have their own rules. UDFs have their own flexible variation of
the RETURN statement, which exits the body of the UDF. In fact, a UDF requires the RETURN statement be
used to return scalar or tabular results to the caller. You will see UDFs again in detail in Chapter 5.

TRY…CATCH Statement

The TRY...CATCH statement implements semistructured error handling in T-SQL. Let’s

begin with the format for TRY...CATCH:

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS72

794Xch04final.qxd  3/29/07  4:45 PM  Page 72



BEGIN TRY

{ SQL statement | statement block }

END TRY

BEGIN CATCH

{ SQL statement | statement block }

END CATCH

The TRY...CATCH statement provides error handling similar to C++ and the .NET lan-

guages. If one of the statements in the TRY block generates an error, control is passed to

the CATCH block. In order for TRY...CATCH to catch errors, the following conditions must

be met:

• The error must have a severity higher than 10, but cannot close the database

connection.

• The error cannot be a compilation error, such as a syntax error.

• The error cannot have occurred during a statement level recompilation 

(e.g., name resolution error).

• The error must not have been caused by a broken connection (e.g., KILL state-

ment execution).

• The error must not have been caused by an Attention, such as those sent by

Microsoft Distributed Transaction Coordinator.

Unlike C++ and .NET language structured error handling, T-SQL’s TRY...CATCH does

not allow you to apply multiple CATCH blocks to a single TRY. The TRY...CATCH statement

also prevents the error from being automatically passed on to the calling batch, proce-

dure, or front-end application. You can use the RAISERROR statement to rethrow an error

or throw a new error from within a CATCH block.

TRY...CATCH blocks can also be nested. If a statement in a nested TRY block throws

an error, control is passed to its associated CATCH block. If a statement in a nested CATCH

block throws an error, control passes to the containing CATCH block. A nested

TRY...CATCH block is useful for capturing potential errors in a CATCH block as well.

In addition, SQL Server 2005 enhances error handling by adding several functions for

gathering error information inside a CATCH block:

• ERROR_NUMBER() is the number of the error, which is the same value returned by the

@@error function. Unlike @@error, ERROR_NUMBER() is not cleared and reset on each

statement executed.

• ERROR_SEVERITY()() is the error severity level.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 73

794Xch04final.qxd  3/29/07  4:45 PM  Page 73



• ERROR_STATE() is the error state number.

• ERROR_PROCEDURE() is the name of the stored procedure or trigger where the error

occurred.

• ERROR_LINE() is the number of the line in the routine that generated the error.

• ERROR_MESSAGE() returns the complete error message text.

The CATCH block functions in the previous list always return NULL when they are

accessed outside of a CATCH block. Listing 4-8 shows a simple example of a TRY...CATCH

block with code that will generate a primary key constraint violation error, severity 14.

Listing 4-8. TRY…CATCH Block Error Handling

CREATE TABLE #test_error (i INT NOT NULL PRIMARY KEY);

BEGIN TRY

INSERT INTO #test_error (i) VALUES (1);

INSERT INTO #test_error (i) VALUES (1); -- This INSERT causes the error.

END TRY

BEGIN CATCH

PRINT ERROR_NUMBER();

PRINT ERROR_SEVERITY();

PRINT ERROR_STATE();

PRINT ERROR_LINE();

PRINT ERROR_MESSAGE();

END CATCH

DROP TABLE #test_error;

CASE Expression
The T-SQL CASE function is SQL Server’s implementation of the ANSI SQL CASE expres-

sion. While the previous T-SQL control-of-flow statements I discussed allow for

conditional execution of SQL statements or statement blocks, the CASE expression

allows for set-based conditional processing inside a single query. CASE provides two

syntaxes, simple and searched, which I discuss in this section.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS74

794Xch04final.qxd  3/29/07  4:45 PM  Page 74



Simple CASE Expression

The simple CASE expression returns a result expression based on the value of a given

input expression. Here is the format for a simple CASE expression:

CASE input expression

WHEN when expression1 THEN result expression1

WHEN when expression2 THEN result expression2

[ ...n ]

[ ELSE else result expression ]

END

The simple CASE expression compares the input expression to the series of

when expressions. Once a match is encountered, CASE returns the corresponding result

expression. If no match is found, the else result expression is returned. Consider

the example in Listing 4-9, which counts all of the AdventureWorks customers on the

West Coast:

Listing 4-9. Simple CASE Expression

SELECT SUM(AllCustomers.NumOfCustomers), AllCustomers.Coast

FROM

(

SELECT COUNT(*) AS NumOfCustomers,

sp.CountryRegionCode,

CASE sp.StateProvinceCode

WHEN 'CA' THEN 'West Coast'

WHEN 'WA' THEN 'West Coast'

WHEN 'OR' THEN 'West Coast'

ELSE 'Elsewhere'

END AS Coast

FROM Sales.CustomerAddress s

INNER JOIN Person.Address p

ON s.AddressID = p.AddressID

INNER JOIN Person.StateProvince sp

ON p.StateProvinceID = p.StateProvinceID

WHERE CountryRegionCode = 'US'

GROUP BY sp.CountryRegionCode,

sp.StateProvinceCode

) AllCustomers

GROUP BY AllCustomers.Coast;

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 75

794Xch04final.qxd  3/29/07  4:45 PM  Page 75



The CASE expression in the subquery returns a value of West Coast where the

StateProvinceCode is CA, WA, and OR. For all other states in the United States, it returns a

value of Elsewhere:

CASE sp.StateProvinceCode

WHEN 'CA' THEN 'West Coast'

WHEN 'WA' THEN 'West Coast'

WHEN 'OR' THEN 'West Coast'

ELSE 'Elsewhere'

END AS Coast

■Note If none of the when expressions match the input expression, the else result expression

is returned. If no match is found and ELSE is not specified, CASE returns NULL.

Searched CASE Expression

The searched CASE expression provides a mechanism for performing more complex com-

parisons. The syntax is the following:

CASE

WHEN Boolean expression1 THEN result expression1

WHEN Boolean expression2 THEN result expression2

[ ...n ]

[ ELSE else result expression ]

END

The searched CASE evaluates the Boolean expressions provided until it encounters

one that evaluates to TRUE. At that point it returns the corresponding result expression.

If none of the Boolean expressions evaluates to TRUE, the else result expression is

returned. The Boolean expressions in the searched CASE expression can take advantage

of any valid SQL Boolean operators including <, >, =, LIKE, IN, and so on. We can expand

the previous simple CASE expression to cover multiple geographic areas using the

searched CASE expression with the IN logical operator, as shown in Listing 4-10.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS76

794Xch04final.qxd  3/29/07  4:45 PM  Page 76



Listing 4-10. Searched CASE Expression

SELECT SUM(AllCustomers.NumOfCustomers), AllCustomers.Area

FROM

(

SELECT COUNT(*) AS NumOfCustomers, sp.CountryRegionCode,

CASE

WHEN sp.StateProvinceCode IN ('CA', 'WA', 'OR') THEN 'West Coast'

WHEN sp.StateProvinceCode IN ('HI', 'AK') THEN 'Pacific'

WHEN sp.StateProvinceCode IN ('CT', 'MA', 'ME', 

'NH', 'RI', 'VT') THEN 'New England'

ELSE 'Elsewhere'

END AS Area

FROM Sales.CustomerAddress s

INNER JOIN Person.Address p

ON s.AddressID = p.AddressID

INNER JOIN Person.StateProvince sp

ON p.StateProvinceID = p.StateProvinceID

WHERE CountryRegionCode = 'US'

GROUP BY sp.CountryRegionCode, sp.StateProvinceCode

) AllCustomers

GROUP BY AllCustomers.Area;

The searched CASE expression in the example uses the IN operator to return the

geographical area that StateProvinceCode is in: StateProvinceCode values of CA, WA, and OR

return West Coast; HI and AK return Pacific; and CT, MA, ME, NH, RI, and VT return New England.

If none of the Boolean expressions are TRUE, the searched CASE expression returns

Elsewhere:

CASE

WHEN sp.StateProvinceCode IN ('CA', 'WA', 'OR') THEN 'West Coast'

WHEN sp.StateProvinceCode IN ('HI', 'AK') THEN 'Pacific'

WHEN sp.StateProvinceCode IN ('CT', 'MA', 'ME', 

'NH', 'RI', 'VT') THEN 'New England'

ELSE 'Elsewhere'

END AS Area

The CASE expression, simple or searched, can be used in SELECT, UPDATE, INSERT, or

DELETE statements.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 77

794Xch04final.qxd  3/29/07  4:45 PM  Page 77



■Tip If you want to check for a NULL in a CASE expression, you must use the IS NULL or IS NOT NULL

keywords in a searched CASE expression. Because of the restrictions on comparisons to NULL, checking
directly for NULL with a simple CASE expression is not allowed.

CASE and Pivot Tables

Many times, reporting requirements dictate that a result should be returned in pivot

table format. Pivot table format simply means that the labels for columns and/or rows

are generated from the data contained in the tables. Microsoft Access users have long

had the ability to generate pivot tables on their data, and SQL Server 2005 introduces the

new PIVOT and UNPIVOT operators (described in Chapter 3). Prior to SQL Server 2005, how-

ever, CASE expressions were the only method of generating pivot table type queries. And

even though SQL Server 2005 provides the new PIVOT and UNPIVOT operators, truly

dynamic pivot tables still require using CASE expressions and dynamic SQL. The static

pivot table query shown in Listing 4-11 returns a pivot table style result with the total

number of orders for each AdventureWorks sales region in the United States.

Listing 4-11. CASE-Style Pivot Table

SELECT t.CountryRegionCode,

SUM (

CASE

WHEN t.Name = 'Northwest' THEN 1

ELSE 0

END) AS Northwest_US,

SUM (

CASE

WHEN t.Name = 'Northeast' THEN 1

ELSE 0

END) AS Northeast_US,

SUM (

CASE

WHEN t.Name = 'Southwest' THEN 1

ELSE 0

END) AS Southwest_US,

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS78

794Xch04final.qxd  3/29/07  4:45 PM  Page 78



SUM (

CASE

WHEN t.Name = 'Southeast' THEN 1

ELSE 0

END) AS Southeast_US,

SUM (

CASE

WHEN t.Name = 'Central' THEN 1

ELSE 0

END) AS Central_US

FROM Sales.SalesOrderHeader soh

INNER JOIN Sales.SalesTerritory t

ON soh.TerritoryID = t.TerritoryID

WHERE t.CountryRegionCode = 'US'

GROUP BY t.CountryRegionCode

Of course this type of static pivot table can also be done with the new SQL Server

2005 PIVOT operator, as shown in Listing 4-12.

Listing 4-12. PIVOT Operator Pivot Table

SELECT [CountryRegionCode], [Northwest], [Northeast],

[Southwest], [Southeast], [Central]

FROM

(

SELECT CountryRegionCode, t.Name

FROM Sales.SalesOrderHeader soh

INNER JOIN Sales.SalesTerritory t

ON soh.TerritoryID = t.TerritoryID

WHERE t.CountryRegionCode = 'US'

) p

PIVOT

(

COUNT (Name)

FOR Name

IN ([Northwest], [Northeast], [Southwest], [Southeast], [Central])

) AS pvt;

See Chapter 3 for more on PIVOT and UNPIVOT. The results of both these methods of

generating a pivot table query produce the same results, as shown in Figure 4-1.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 79

794Xch04final.qxd  3/29/07  4:45 PM  Page 79



On occasion you might need to run a pivot table–style report where you don’t know

the column names in advance. This is a dynamic pivot table script that uses a tempo-

rary table and dynamic SQL to generate a pivot table, without specifying the column

names in advance. Listing 4-13 demonstrates one method of generating dynamic pivot

tables in T-SQL.

Listing 4-13. Dynamic Pivot Table Query

DECLARE @sql NVARCHAR(MAX);

CREATE TABLE #temp (TerritoryID INT NOT NULL PRIMARY KEY,

CountryRegion NVARCHAR(20) NOT NULL,

CountryRegionCode NVARCHAR(3) NOT NULL);

INSERT INTO #temp (TerritoryID, CountryRegion, CountryRegionCode)

SELECT DISTINCT TerritoryID,

Name,

CountryRegionCode

FROM Sales.SalesTerritory;

DECLARE @i INT;

SELECT @i = MIN(TerritoryID)

FROM #temp;

SELECT @sql = N'SELECT ';

WHILE @i <=

(

SELECT MAX(TerritoryID)

FROM #temp

)

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS80

Figure 4-1. PIVOT query result

794Xch04final.qxd  3/29/07  4:45 PM  Page 80



BEGIN

SELECT @sql = @sql + N'SUM (CASE ' +

N'WHEN t.TerritoryID = ' + CAST(TerritoryID AS NVARCHAR(3)) +

N' ' +N'THEN 1 ELSE 0 END) AS ' + QUOTENAME(CountryRegion + 

N'_' + CountryRegionCode)+

CASE WHEN @i < (

SELECT MAX(TerritoryID)

FROM #temp

) THEN N', '

ELSE N' '

END

FROM #temp

WHERE TerritoryID = @i;

SELECT @i = @i + 1;

END;

SELECT @sql = @sql + N'FROM Sales.SalesOrderHeader soh ' +

N'INNER JOIN Sales.SalesTerritory t ' +

N'ON soh.TerritoryID = t.TerritoryID ' ;

EXEC (@sql);

DROP TABLE #temp;

The previous script first declares an nvarchar variable to hold the dynamically gener-

ated SQL script. It then creates a temporary table and populates it with all of the column

names that will be generated by the script:

DECLARE @sql VARCHAR(MAX);

CREATE TABLE #temp (TerritoryID INT NOT NULL PRIMARY KEY,

CountryRegion NVARCHAR(20) NOT NULL,

CountryRegionCode NVARCHAR(3) NOT NULL);

INSERT INTO #temp (TerritoryID, CountryRegion, CountryRegionCode)

SELECT DISTINCT TerritoryID,

Name,

CountryRegionCode

FROM Sales.SalesTerritory;

Next, the script locates the first TerritoryID from the temporary table and initializes

the @sql SELECT statement:

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 81

794Xch04final.qxd  3/29/07  4:45 PM  Page 81



DECLARE @i INT;

SELECT @i = MIN(TerritoryID)

FROM #temp;

SELECT @sql = 'SELECT ';

The script then generates the CASE expressions and column names dynamically

based on the data stored in the temporary table:

WHILE @i <=

(

SELECT MAX(TerritoryID)

FROM #temp

)

BEGIN

SELECT @sql = @sql + 'SUM (CASE ' +

N'WHEN t.TerritoryID = ' + CAST(TerritoryID AS NVARCHAR(3)) +

N' ' +N'THEN 1 ELSE 0 END) AS ' + QUOTENAME(CountryRegion + 

N'_' + CountryRegionCode)+

CASE WHEN @i < (

SELECT MAX(TerritoryID)

FROM #temp

) THEN N', '

ELSE N' '

END

FROM #temp

WHERE TerritoryID = @i;

SELECT @i = @i + 1;

END;

Finally, you add the FROM clause to the dynamic SQL, execute it (using EXEC), and drop

the temporary table:

SELECT @sql = @sql + N'FROM Sales.SalesOrderHeader soh ' +

N'INNER JOIN Sales.SalesTerritory t ' +

N'ON soh.TerritoryID = t.TerritoryID ' ;

EXEC (@sql);

DROP TABLE #temp;

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS82

794Xch04final.qxd  3/29/07  4:45 PM  Page 82



The result of the dynamic pivot table query is shown in Figure 4-2.

■Caution Anytime you use dynamic SQL, make sure that you take precautions against SQL injection, that
is, malicious SQL code being inserted into your SQL statements. In this instance we’re using the QUOTENAME
function to quote the column names being dynamically generated to help avoid SQL injection problems.

COALESCE and NULLIF

The COALESCE function takes a list of expressions as arguments and returns the first non-

NULL value from the list. The format for COALESCE is the following:

COALESCE (expression1, expression2 [ , ...n ])

The COALESCE function is defined by ANSI as shorthand for the equivalent searched

CASE expression:

CASE

WHEN expression1 IS NOT NULL THEN expression1

WHEN expression2 IS NOT NULL THEN expression2

[ ...n ]

END

The following COALESCE function call returns the value of  MiddleName when MiddleName

is not NULL, or the string 'No Middle Name' when MiddleName is NULL:

COALESCE (MiddleName, 'No Middle Name')

The NULLIF function accepts two arguments. NULLIF returns NULL if the two expres-

sions are equal, or the value of the first expression if they are not equal. The format of

NULLIF is the following:

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 83

Figure 4-2. Dynamic pivot table query results

794Xch04final.qxd  3/29/07  4:45 PM  Page 83



NULLIF (expression1, expression2)

NULLIF is defined by the ANSI standard as equivalent to the following searched CASE

expression:

CASE WHEN expression1 = expression2 THEN NULL

ELSE expression1

END

NULLIF is often used in conjunction with COALESCE. Consider the following example

in Listing 4-14 that combines COALESCE with NULLIF to return the string 'This is NULL or

A' if the variable @s is set to 'A' or NULL.

Listing 4-14. Using COALESCE with NULLIF

DECLARE @s VARCHAR(10);

SELECT @s = 'A';

SELECT COALESCE(NULLIF(@s, 'A'), 'This is NULL or A');

T-SQL has long had alternate functionality similar to COALESCE. Specifically the ISNULL

function accepts two parameters and returns NULL if they are equal.

■Tip COALESCE is more flexible than ISNULL and is ANSI-compliant to boot. This means it is also the
more portable option among ANSI-compliant systems. COALESCE also implicitly converts the result to the
data type with the highest precedence from the list of expressions. ISNULL implicitly converts the result to
the data type of the first expression. The fact of the matter is that the only thing ISNULL has going for it is
that it is backward-compatible with SQL 6.5 (COALESCE was introduced with SQL 7.0). Keep this in mind
when deciding which function to use.

Summary
This chapter discussed SQL three-valued logic, T-SQL control-of-flow statements, and

CASE expressions. The control-of-flow statements discussed include the following:

• BEGIN...END keywords

• IF...ELSE statement

• WHILE, BREAK, and CONTINUE statements

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS84

794Xch04final.qxd  3/29/07  4:45 PM  Page 84



• GOTO statement

• WAITFOR statement

• RETURN keyword

• TRY...CATCH statement

The CASE expression section included discussions of simple CASE expressions,

searched CASE expressions, and the COALESCE and NULLIF functions, which are defined

as shorthand for common CASE expressions. Also covered was static and dynamic pivot

table creation using CASE expressions.

The next chapter begins my discussion of T-SQL programmability features beginning

with user-defined functions.

CHAPTER 4 ■ CONTROL-OF-FLOW AND CASE EXPRESSIONS 85

794Xch04final.qxd  3/29/07  4:45 PM  Page 85



794Xch04final.qxd  3/29/07  4:45 PM  Page 86



User-Defined Functions

Each new version of SQL Server features improvements to T-SQL that make develop-

ment easier. SQL Server 2000 introduced the concept of user-defined functions (UDFs).

Like functions in other programming languages, T-SQL UDFs offer a convenient way for

developers to define procedural routines that accept parameters, perform actions based

on those parameters, and return data to the caller. T-SQL functions come in three flavors:

inline table-valued functions, multistatement table-valued functions, and scalar func-

tions. In this chapter I will talk about T-SQL UDFs. SQL Server 2005 also adds the ability

to create SQLCLR UDFs, which I talk about in Chapter 14.

Scalar Functions
The basic form of user-defined functions is the scalar function. A scalar function returns

a single value as its result. The following is the format of the scalar UDF CREATE FUNCTION

statement:

CREATE FUNCTION [ schema_name. ] function_name

( [ { @parameter [ AS ] [ data_type_schema. ] parameter_data_type [ = default ] }

[ , ...n ] ]

)

RETURNS return_data_type

[ WITH function_option [ , ...n ] ]

[ AS ]

BEGIN

function_body

RETURN scalar_expression

END;

The statement begins with the CREATE FUNCTION keywords followed by the schema_name

and function_name separated by a period, the standard T-SQL two-part naming syntax.

The schema_name is optional, and if omitted it defaults to the current schema (this will

usually be dbo). It’s a very good idea to always specify the schema_name to ensure your UDF
87

C H A P T E R  5

794Xch05final.qxd  3/29/07  4:43 PM  Page 87



gets created in the correct schema. The function_name must follow the standard T-SQL

identifier naming conventions.

■Caution Always specify the schema_name to ensure your UDF gets created in the correct schema.

The function_name is immediately followed by the parameter list. Names of parameters

in the parameter list follow the convention for T-SQL variable names. Each parameter

name begins with the at sign (@), and must comply with the rules for T-SQL identifiers. The

type of each parameter is specified after the AS keyword. The parameter_data_type specifies

the scalar type of each parameter. The optional data_type_schema specifies the schema to

which the specified parameter_data_type belongs. Each parameter can also have a default

value assigned to it by using the optional = default immediately after the

parameter_data_type.

■Note Not all functions require parameters. The system function PI(), which returns the value of the con-
stant π (3.14159265358979), requires no parameters. If your function doesn’t require parameters, specify
the empty parameter list “()” in the definition. When calling a function that doesn’t require parameters, the
“()” are required after the function name.

The RETURNS keyword is followed by a valid SQL Server data type, indicating the type

of data returned by the UDF.

The optional WITH keyword indicates one or more of the following function options.

If more than one is specified, they are separated by commas:

• The ENCRYPTION option specifies that your UDF will be stored in the database in

encrypted format. It also prevents users with no access to the system tables or

database files from retrieving the obfuscated text of your UDF.

• The SCHEMABINDING option specifies that your UDF will be bound to database

objects referenced in the function_body. With SCHEMABINDING turned on, attempts

to change or drop referenced tables and other database objects results in an

error. This helps prevent inadvertent changes that can break your UDF. Addition-

ally, SCHEMABINDING can improve the performance of UDFs that don’t reference

other database objects at all.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS88

794Xch05final.qxd  3/29/07  4:43 PM  Page 88



• The RETURNS NULL ON NULL INPUT option indicates to SQL Server that if any of the

parameters passed in are NULL, the result is NULL. This optimizing option allows SQL

to skip the body of the function if NULL is passed in as a parameter.

• The CALLED ON NULL INPUT option is the opposite of RETURNS NULL ON NULL INPUT.

When CALLED ON NULL INPUT is specified, SQL Server executes the body of the func-

tion even if the parameters are NULL. CALLED ON NULL INPUT is the default for all

scalar-valued functions.

• The EXECUTE AS option is specified with the EXECUTE AS clause:

{ EXEC | EXECUTE } AS { CALLER | SELF | OWNER | 'user_name' }

EXECUTE AS can be used on scalar UDFs and multistatement TVFs but cannot be

used with inline TVFs. This option allows the UDF to run under the context of the

specified user.

The CALLER keyword specifies the UDF will run under the context of the user execut-

ing the function. CALLER is the default if no EXECUTE AS option is specified. SELF specifies

the UDF will run under the context of the user who created (or altered) it. OWNER specifies

the UDF should run in the context of the owner of the function, or the owner of the

schema containing the function if the UDF does not have an owner. Finally, a specific

user can be specified by specifying 'user_name'.

To pull it all together, we’ll take a trip back in time to high school geometry class for

a simple scalar UDF demonstration. In accordance with the rules passed down from

Euclid to Miss Kopp (my high-school geometry teacher) this UDF accepts a circle’s

radius and returns the area of the circle using the formula area = π · r2. Listing 5-1

demonstrates a simple scalar UDF.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 89

If your UDF doesn’t reference any database tables, you can gain performance benefits from spe-
cifying the WITH SCHEMABINDING option. By default SQL Server 2005 sets two extended proper-
ties, SYSTEMDATAACCESS and USERDATAACCESS, to 1 indicating that your UDF could potentially
access system catalogs and user tables. By using WITH SCHEMABINDING on a UDF that doesn’t
access tables and database objects, SQL Server will reset these properties to 0. This in turn allows
the query optimizer to generate more efficient plans, since it doesn’t have to generate the addi-
tional protections against data changes that UDFs accessing table data require. You can verify the
values of these extended properties with the OBJECTPROPERTYEX() function:

SELECT OBJECTPROPERTYEX(OBJECT_ID('function_name'), 'SYSTEMDATAACCESS');

SELECT OBJECTPROPERTYEX(OBJECT_ID('function_name'), 'USERDATAACCESS');

794Xch05final.qxd  3/29/07  4:43 PM  Page 89



Listing 5-1. Simple Scalar UDF

CREATE FUNCTION dbo.fnCircleArea (@radius FLOAT = 1.0)

RETURNS FLOAT

WITH RETURNS NULL ON NULL INPUT, SCHEMABINDING

AS

BEGIN

RETURN PI() * POWER(@radius, 2);

END;

The first line defines the schema and name of the function (dbo.fnCircleArea) and

the single required parameter: the radius of the circle (@radius). I will define @radius as

a T-SQL FLOAT type with a default value of 1.0:

CREATE FUNCTION dbo.fnCircleArea (@radius FLOAT = 1.0)

The next line contains the RETURNS keyword, specifying that the UDF returns a FLOAT

result:

RETURNS FLOAT

The third line contains optional function_options following the WITH keyword. In

the sample, I use the RETURNS NULL ON NULL INPUT and SCHEMABINDING function options

for performance improvements:

WITH RETURNS NULL ON NULL INPUT, SCHEMABINDING

The AS keyword indicates the start of the function body, which must be enclosed in

the T-SQL BEGIN...END keywords for a scalar UDF. Our sample function is very simple,

consisting of a single RETURN statement that immediately returns the value of the circle

area calculation. Note that the RETURN statement must be the last statement before the

END keyword in every scalar UDF:

AS

BEGIN

RETURN PI() * POWER(@radius, 2);

END;

You can test this user-defined function with a couple of SELECT statements:

SELECT dbo.fnCircleArea(10);

SELECT dbo.fnCircleArea(DEFAULT);

CHAPTER 5 ■ USER-DEFINED FUNCTIONS90

794Xch05final.qxd  3/29/07  4:43 PM  Page 90



Recursion in Scalar UDFs

Now that we have the basics, let’s hang out in math class for a few more minutes to talk

about recursion. Like most procedural programming languages that allow function defi-

nitions, T-SQL allows recursion. There’s hardly a better way to demonstrate recursion

than the most basic recursive algorithm around: the factorial function.

For those who put factorials out of their minds immediately after graduation, let

me give a brief rundown of what they are. A factorial is the product of all natural (or

counting) numbers less than or equal to n, where n > 0. Factorials are represented in

mathematics by the bang notation: n!. As an example, 5! = 1 · 2 · 3 · 4 · 5 = 120. Our sim-

ple scalar UDF will calculate a factorial recursively for an integer parameter passed into

it. Listing 5-2 is a recursive scalar UDF.

Listing 5-2. Recursive Scalar UDF

CREATE FUNCTION dbo.fnFactorial(@n INT = 1)

RETURNS FLOAT

WITH RETURNS NULL ON NULL INPUT

AS

BEGIN

RETURN

(CASE

WHEN @n <= 0 THEN NULL

WHEN @n > 1 THEN CAST(@n AS FLOAT) * dbo.fnFactorial(@n - 1)

ELSE 1

END);

END;

This simple UDF calculates the factorial recursively by calling itself. Here we’ll step

through the code. The first few lines are similar to the previous sample:

CREATE FUNCTION dbo.fnFactorial(@n INT = 1)

RETURNS FLOAT

WITH RETURNS NULL ON NULL INPUT

This defines the function with the name dbo.fnFactorial, which accepts a single INT

parameter. We set the parameter default to 1.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 91

794Xch05final.qxd  3/29/07  4:43 PM  Page 91



The dbo.fnFactorial UDF returns a FLOAT result, because the INT type overflows at 13!

and BIGINT bombs out at 21!. We also specify RETURNS NULL ON NULL INPUT for increased

performance if @n is NULL.

Next we define the body of our UDF. Again, a single RETURN statement, this time with a

searched CASE expression, will do the trick:

AS

BEGIN

RETURN

(CASE

WHEN @n <= 0 THEN NULL

WHEN @n > 1 THEN CAST(@n AS FLOAT) * dbo.fnFactorial(@n - 1)

WHEN @n = 1 THEN 1

END);

END;

CHAPTER 5 ■ USER-DEFINED FUNCTIONS92

UDF DEFAULT PARAMETERS

Unlike stored procedures, UDFs require that all parameters be specified when calling them, even if you
declare default values for those parameters. If you want to use a parameter’s default value, you must
use the T-SQL keyword DEFAULT as a placeholder for the parameter when calling the UDF. Note that
DEFAULT is not a value or a string, but a T-SQL keyword. To call the dbo.fnFactorial UDF with the
default parameter value, you would use a statement like the following:

SELECT dbo.fnFactorial (DEFAULT);

Calling dbo.fnFactorial with no parameters

SELECT dbo.fnFactorial();

makes SQL Server complain:

Msg 313, Level 16, State 2, Line 1

An insufficient number of arguments were supplied for the procedure or 

function dbo.fnFactorial.

This limits the usefulness of default parameter values in UDFs. I personally recommend accepting
NULL values and using the COALESCE function to assign a default value yourself inside the body of the
function. This is a much more flexible solution than the DEFAULT keyword.

794Xch05final.qxd  3/29/07  4:43 PM  Page 92



The CASE expression checks the value of @n. If @n is 0 or negative, dbo.fnFactorial

returns NULL. If @n is greater than 1, dbo.fnFactorial returns @n * dbo.fnFactorial(@n - 1),

the recursive part of our UDF. Finally, if @n is 1, it returns 1. This is the part of the

dbo.fnFactorial UDF that actually stops the recursion. Without the check for @n = 1, you

could theoretically end up in an infinite recursive loop. In practice, however, SQL Server

will “save you from yourself” by limiting you to a maximum of 32 levels of recursion. So

you can call dbo.fnFactorial with the following parameters:

SELECT dbo.fnFactorial(NULL); -- Returns NULL

SELECT dbo.fnFactorial(-1); -- Returns NULL

SELECT dbo.fnFactorial(0); -- Returns NULL

SELECT dbo.fnFactorial(5); -- Returns 120

SELECT dbo.fnFactorial(32); -- Returns 2.63130836933694E+35

But if you try to do the following

SELECT dbo.fnFactorial(33);

SQL Server will grumble loudly with the following message:

Msg 217, Level 16, State 1, Line 1

Maximum stored procedure, function, trigger, or view nesting level 

exceeded (limit 32).

Procedural Code in UDFs

So far we’ve talked about simple functions that demonstrate the basic points of scalar

user-defined functions; but in all likelihood, unless we’re implementing business logic for

a swimming pool installation company, neither you nor I will probably need to calculate

the area of a circle in T-SQL.

A common problem that we have a much greater chance of running into is name-

based searching. T-SQL offers tools for exact matching, partial matching, and even

limited pattern matching. Built-in phonetic matching (sound-alike matching) in T-SQL

is offered via the SOUNDEX function. The Soundex algorithm itself is nearly 90 years old

though, and several improved algorithms have sprung up to replace it. One such

improved algorithm, often used by law enforcement due to its increased accuracy, is the

New York State Identification and Intelligence System algorithm (NYSIIS). NYSIIS con-

verts groups of one, two, or three alphabetic characters (known as n-grams) in names to

a phonetic (“sounds like”) approximation. This makes it easier to search for names that

have similar pronunciations but different spellings, such as Smythe and Smith.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 93

794Xch05final.qxd  3/29/07  4:43 PM  Page 93



To demonstrate procedural code in UDFs, we will implement a UDF that phoneti-

cally encodes names using NYSIIS encoding rules. The rules of NYSIIS phonetic encoding

are relatively simple. In the following rule list, the right-facing arrow (➤) indicates

“replace with”:

1. The rules to encode the first characters of a name are the following:

MAC ➤ MCC

KN ➤ NN

K ➤ C

PH ➤ FF

PF ➤ FF

SCH ➤ SSS

2. The last characters of the name are encoded according to the following rules:

EE ➤ Y

IE ➤ Y

DT, RT, RD, NT, or ND ➤ D

3. The first character of the encoded value is set to the first character of the name.

4. After the first characters and last characters are encoded, all remaining characters

in the name are encoded according to the following rules:

EV ➤ AF else A, E, I, O, U ➤ A

Q ➤ G

Z ➤ S

M ➤ N

KN ➤ N else K ➤ C

SCH ➤ SSS

PH ➤ FF

If previous or next character is a nonvowel, H ➤ previous.

If previous character is a vowel, W ➤ previous.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS94

794Xch05final.qxd  3/29/07  4:43 PM  Page 94



5. If the last character of the encoded name is S, remove it.

6. If the last characters of the encoded name are AY, replace them with Y.

7. If the last character of the encoded name is A, remove it.

8. Reduce all side-by-side duplicate characters in the encoded name to a single char-

acter (e.g., AA ➤ A, and SS ➤ S).

We could use some fairly large CASE expressions to implement these rules, but I’ve

chosen the more flexible option of using a replacement table. This table will contain the

majority of the replacement rules in three columns:

• Location, which tells you whether the rule should be applied to the start, end, or

middle of the name

• NGram, which is the n-gram, or sequence of characters, you are trying to encode

• Replacement, which represents the replacement value for a given n-gram

The following CREATE TABLE statement builds the NYSIIS phonetic encoding “replace-

ment rules” table:

-- Create the NYSIIS replacement rules table

CREATE TABLE dbo.NYSIIS_Replacements

(Location NVARCHAR(10) NOT NULL,

NGram NVARCHAR(10) NOT NULL,

Replacement NVARCHAR(10) NOT NULL,

PRIMARY KEY (Location, NGram));

Several INSERT statements such as the following are used to populate the table with

rules for n-grams that appear at the beginning, in the middle, or at the end of words:

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'AY', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'DT', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'EE', N'YY');

...

■Note Because of the length of this example, the full NYSIIS sample code listing is given in Appendix D.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 95

794Xch05final.qxd  3/29/07  4:43 PM  Page 95



The NYSIIS_Replacements table rules reflect most of the NYSIIS rules described by

Robert L. Taft in his famous paper “Name Search Techniques.” To remove side-by-side

duplicates, you’ll use a set-based solution featuring a Numbers table. This is simply a table

with the counting numbers in it (from 1 to 10,000 in this case), as shown in Listing 5-3.

Listing 5-3. Creating a Numbers Table

-- This SELECT INTO statement uses the T-SQL IDENTITY function to quickly

-- build a Numbers table

SELECT TOP 10000 IDENTITY(INT, 1, 1) AS Num

INTO dbo.Numbers

FROM sys.columns a

CROSS JOIN sys.columns b;

-- A table isn't a table without a Primary Key

ALTER TABLE dbo.Numbers

ADD CONSTRAINT PK_Num PRIMARY KEY CLUSTERED (Num);

■Tip The Numbers table is a classic SQL tool useful for converting procedural code to set-based code.
A Numbers table is always handy to have around and is, in my opinion, one of the greatest (and cheapest)
tools you can add to your T-SQL toolkit. Building one is as simple as the previous two T-SQL statements,
and once it’s built you never have to change it; just use it to join in other queries.

The remainder of the NYSIIS rules, such as removal of trailing S characters, will be

implemented using T-SQL flow-of-control constructs and procedural loops in the func-

tion body.

After creating our tables, we’ll define our UDF. The complete UDF script is given in

Appendix D. Here we will break down the UDF. The UDF accepts a single NVARCHAR(50)

parameter and returns an NVARCHAR(50) result. I’ve chosen to use the RETURNS NULL ON

NULL INPUT option to enhance performance when NULL is passed as a parameter:

CREATE FUNCTION dbo.fnNYSIIS (@Name NVARCHAR(50))

RETURNS NVARCHAR(50)

WITH RETURNS NULL ON NULL INPUT

In the body of the UDF we’ll begin by applying some of the previously defined rules

for NYSIIS. We’ll begin by declaring and initializing a local variable to hold our result.

Then we will use a couple of SELECT statements in conjunction with T-SQL’s string manip-

ulation functions to replace the start and end n-grams of the name according to our

NYSIIS rules table:

CHAPTER 5 ■ USER-DEFINED FUNCTIONS96

794Xch05final.qxd  3/29/07  4:43 PM  Page 96



AS

BEGIN

DECLARE @Result NVARCHAR(50);   -- This will contain our end result

SELECT @Result = UPPER(@Name);

-- Replace the start n-gram

SELECT TOP 1 @Result = STUFF(@Result, 1, LEN(NGram), Replacement)

FROM dbo.NYSIIS_Replacements

WHERE Location = N'Start'

AND SUBSTRING(@Result, 1, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

-- Replace the end n-gram

SELECT TOP 1 @Result = STUFF(@Result, LEN(@Result) - LEN(NGram) + 1,

LEN(NGram), Replacement)

FROM dbo.NYSIIS_Replacements

WHERE Location = N'End'

AND SUBSTRING(@Result, LEN(@Result) - LEN(NGram) + 1, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

Next we will save the first letter of the name for later use, perform a loop to apply the

middle-of-name n-gram rules, and finally we restore the first letter we previously saved:

-- Store the first letter of the name

DECLARE @first_letter NCHAR(1)

SELECT @first_letter = SUBSTRING(@Result, 1, 1);

-- Replace all middle n-grams

DECLARE @replacement NVARCHAR(10);

DECLARE @i INT;

SELECT @i = 1;

WHILE @i < LEN(@Result)

BEGIN

SELECT @replacement = NULL;

-- Grab the middle-of-name replacement n-gram

SELECT TOP 1 @replacement = Replacement

FROM dbo.NYSIIS_Replacements

WHERE Location = N'Mid'

AND SUBSTRING(@Result, @i, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 97

794Xch05final.qxd  3/29/07  4:43 PM  Page 97



-- If we found a replacement, apply it

IF @replacement IS NOT NULL

SELECT @Result = STUFF(@Result, @i, LEN(@replacement), @replacement);

-- Move on to the next n-gram

SELECT @i = @i + COALESCE(LEN(@replacement), 1);

END;

-- Replace the first character with the first letter we saved at the start

SELECT @Result = STUFF(@Result, 1, 1, @first_letter);

The next step is to apply the special-case rule handling for the letter H. We will do this

in a single SELECT statement using the Numbers table:

-- Here we apply our special rules for the 'H' character

SELECT @Result =

STUFF(@Result, Num, 1,

CASE SUBSTRING(@Result, Num, 1)

WHEN N'H'

THEN

CASE

WHEN SUBSTRING(@Result, Num + 1, 1)

NOT IN (N'A', N'E', N'I', N'O', N'U')

OR SUBSTRING(@Result, Num - 1, 1)

NOT IN (N'A', N'E', N'I', N'O', N'U')

THEN SUBSTRING(@Result, Num - 1, 1)

ELSE N'H'

END

ELSE SUBSTRING(@Result, Num, 1)

END)

FROM dbo.Numbers

WHERE Num <= LEN(@Result);

I’ll use a similar SELECT statement to reduce side-by-side duplicate letters to a single

letter. The code to replace the duplicates requires two steps: first it replaces the leftmost

letter in each series of side-by-side duplicate letters found with a period; it then removes

all periods from the result using the T-SQL REPLACE function:

CHAPTER 5 ■ USER-DEFINED FUNCTIONS98

794Xch05final.qxd  3/29/07  4:43 PM  Page 98



-- Here we replace the first letter of any sequence of two

-- side-by-side duplicate letters with a period '.'

SELECT @Result =

STUFF(@Result, Num, 1,

CASE SUBSTRING(@Result, Num, 1)

WHEN SUBSTRING(@Result, Num + 1, 1) THEN N'.'

ELSE SUBSTRING(@Result, Num, 1)

END)

FROM dbo.Numbers

WHERE Num <= LEN(@Result);

-- Next we replace all periods '.' with an empty string ''

SELECT @Result = REPLACE(@Result, N'.', N'');

The final rules require removing trailing S characters, followed by the removal of

trailing A characters:

-- Remove trailing 'S' characters

WHILE RIGHT(@Result, 1) = N'S'

SELECT @Result = STUFF(@Result, LEN(@Result), 1, N'');

-- Remove trailing vowels

WHILE RIGHT(@Result, 1) = N'A'

SELECT @Result = STUFF(@Result, LEN(@Result), 1, N'');

Finally, you end the UDF by returning the calculated result:

RETURN @Result;

END;

Now that we’ve built our UDF we can use it to query the Person.Contacts table. The

following query retrieves all contacts with the last name Johnson and its similar or alter-

nate spellings:

SELECT ContactID, FirstName, MiddleName, LastName

FROM Person.Contact

WHERE dbo.fnNYSIIS(LastName) = dbo.fnNYSIIS(N'Johnson');

A sample of the results from this query is shown in Figure 5-1.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 99

794Xch05final.qxd  3/29/07  4:43 PM  Page 99



NYSIIS is useful for approximate name-based searches in a variety of applications,

including customer service, business reporting, and law enforcement. Note that the sam-

ple query is just a demonstration of using the dbo.fnNYSIIS function. I highly recommend

pre-encoding your name data and storing the encoded values in a table. This will result

in much better performance in a production environment.

Multistatement Table-Valued Functions
Multistatement table-valued functions (TVFs) are similar to scalar UDFs but instead of

returning a scalar value, they return a table data type. The format for a multistatement

TVF declaration is the following:

CREATE FUNCTION [ schema_name. ] function_name

( [ { @parameter_name [ AS ] parameter_data_type [ = default ] }

[ , ...n ] ]

)

RETURNS @return_variable TABLE table_type_definition

[ WITH function_option [ ,...n ] ]

[ AS ]

BEGIN

function_body

RETURN;

END

CHAPTER 5 ■ USER-DEFINED FUNCTIONS100

Figure 5-1. Sample dbo.fnNYSIIS results

794Xch05final.qxd  3/29/07  4:43 PM  Page 100



The declaration is very similar to that of a scalar UDF, with a few important

differences:

• The return type following the RETURNS keyword is actually a table variable dec-

laration, with its structure declared in the table_type_definition.

• The RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT function options are 

not valid in a table-valued function definition.

• The RETURN statement has no values or variables following it.

Inside the body of the multistatement table-valued function you can use the data-

manipulation language (DML) statements INSERT, UPDATE, and DELETE to create and manip-

ulate the return results in the @return_variable table variable.

For the example of a multistatement TVF, we’ll create another business application

function. Namely we’re going to create a product pull list for AdventureWorks. Our TVF

will match the AdventureWorks sales orders, namely the Sales.SalesOrderDetail table,

against the product inventory in the Production.ProductInventory table. It will effectively

create a list for our employees, telling them exactly which inventory bin to go to in order

to fill an order. There are some business rules we will need to enforce in this TVF:

• In some cases the number of ordered items might be more than will fit in one

bin. In that case our pull list will instruct the employee to grab product from

multiple bins.

• Any partial fills from a bin should be reported on the list.

• Any substitution work will be handled by a separate business process and

shouldn’t be allowed on this list.

• No zero fills will be reported back on the list.

Let’s consider an example to demonstrate these rules in action. For purposes of our

example we’ll say that we have three customers: Jill, Mike, and Dave. Let’s say that Jill,

Mike, and Dave each order five of item ID number 783, the black Mountain-200 42-inch

mountain bike. We will say that we have six of this particular inventory item in Bin 1,

Shelf A, Location 7. We also have another three of this particular item in Bin 2, Shelf A,

Location 7. Our business rules will create a pull list like the following (also see Figure 5-2):

• Jill’s order: Pull five of item 783 from Location 7, Shelf A, Bin 1; complete fill.

• Mike’s order: Pull one of Item 783 from Location 7, Shelf A, Bin 1; partial fill.

• Mike’s order: Pull three of item 783 from Location 7, Shelf A, Bin 2; partial fill com-

pletes the order.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 101

794Xch05final.qxd  3/29/07  4:43 PM  Page 101



Since we ran out of item 783 at this point (we had nine and used all nine to fill

Mike’s and Jill’s orders), we will not even list Dave’s order. Also note that this function

doesn’t concern itself with product substitutions, such as completing Mike’s and Dave’s

orders with a comparable product such as item ID number 780 (the silver Mountain-

200 42-inch mountain bike), if we happen to have it in stock.

So with that out of the way, let’s dig in (see Listing 5-4).

Listing 5-4. Creating a Product Pull List

CREATE FUNCTION dbo.fnProductPullList()

RETURNS @result TABLE (

SalesOrderID INT NOT NULL,

ProductID INT NOT NULL,

LocationID SMALLINT NOT NULL,

Shelf NVARCHAR(10) NOT NULL,

Bin TINYINT NOT NULL,

QuantityInBin SMALLINT NOT NULL,

QuantityOnOrder SMALLINT NOT NULL,

QuantityToPull SMALLINT NOT NULL,

PartialFillFlag CHAR(1) NOT NULL,

PRIMARY KEY (SalesOrderID, ProductID, LocationID, Shelf, Bin))

AS

CHAPTER 5 ■ USER-DEFINED FUNCTIONS102

Figure 5-2. Filling orders from inventory

794Xch05final.qxd  3/29/07  4:43 PM  Page 102



BEGIN

INSERT INTO @result (

SalesOrderID,

ProductID,

LocationID,

Shelf,

Bin,

QuantityInBin,

QuantityOnOrder,

QuantityToPull,

PartialFillFlag)

SELECT Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty,

COUNT(*) AS PullQty,

CASE WHEN COUNT(*) < Order_Details.OrderQty

THEN 'Y'

ELSE 'N'

END AS PartialFillFlag

FROM

(

SELECT ROW_NUMBER() OVER (PARTITION BY i.ProductID

ORDER BY i.ProductID,

i.LocationID,

i.Shelf,

i.Bin) AS Num,

i.ProductID,

i.LocationID,

i.Shelf,

i.Bin,

i.Quantity

FROM

(

SELECT ProductID,

LocationID,

Shelf,

Bin,

Quantity

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 103

794Xch05final.qxd  3/29/07  4:43 PM  Page 103



FROM Production.ProductInventory

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND Quantity

) i

INNER JOIN Production.ProductInventory p

ON i.ProductID = p.ProductID

AND i.LocationID = p.LocationID

AND i.Shelf = p.Shelf

AND i.Bin = p.Bin

) Inventory_Details

INNER JOIN

(

SELECT ROW_NUMBER() OVER (PARTITION BY o.ProductID

ORDER BY o.ProductID,

o.SalesOrderID) AS Num,

o.ProductID,

o.SalesOrderID,

o.OrderQty

FROM

(

SELECT ProductID,

SalesOrderID,

SalesOrderDetailID,

OrderQty

FROM Sales.SalesOrderDetail

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND OrderQty

) o

INNER JOIN Sales.SalesOrderDetail sod

ON o.SalesOrderID = sod.SalesOrderID

AND o.SalesOrderDetailID = sod.SalesOrderDetailID

AND o.ProductID = sod.ProductID

) Order_Details

ON Inventory_Details.ProductID = Order_Details.ProductID

AND Inventory_Details.Num = Order_Details.Num

GROUP BY Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty;

RETURN;

END;

CHAPTER 5 ■ USER-DEFINED FUNCTIONS104

794Xch05final.qxd  3/29/07  4:43 PM  Page 104



This one is going to be a bit involved, so let’s get the basic stuff out of the way first.

In the CREATE FUNCTION statement we begin by defining our multistatement TVF. We spec-

ify that it accepts no parameters and that it returns a table. We use the name @result for

the table variable that will hold and return our results and define the structure of the

table in the RETURNS clause. Note that we define a primary key, which will also serve as

the clustered index on @result. Due to limitations in table variables, we can’t explicitly

specify other indexes on @result:

CREATE FUNCTION dbo.fnProductPullList()

RETURNS @result TABLE (

SalesOrderID INT NOT NULL,

ProductID INT NOT NULL,

LocationID SMALLINT NOT NULL,

Shelf NVARCHAR(10) NOT NULL,

Bin TINYINT NOT NULL,

QuantityInBin SMALLINT NOT NULL,

QuantityOnOrder SMALLINT NOT NULL,

QuantityToPull SMALLINT NOT NULL,

PartialFillFlag CHAR(1) NOT NULL,

PRIMARY KEY (SalesOrderID, ProductID, LocationID, Shelf, Bin))

The body of the function begins with the INSERT INTO...SELECT statement, which

populates the @result table variable. The only things of note in particular about this

portion of the multistatement TVF are the following:

• The COUNT(*) AS PullQty line, which returns the total number of each item to pull

from a given bin to fill a specific sales order detail

• The CASE statement, which returns Y for a sales order item partially filled from a

particular bin, or N for a sales order item completely filled from a particular bin

The body of the function looks like this:

AS

BEGIN

INSERT INTO @result (

SalesOrderID,

ProductID,

LocationID,

Shelf,

Bin,

QuantityInBin,

QuantityOnOrder,

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 105

794Xch05final.qxd  3/29/07  4:43 PM  Page 105



QuantityToPull,

PartialFillFlag)

SELECT Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty,

COUNT(*) AS PullQty,

CASE WHEN COUNT(*) < Order_Details.OrderQty

THEN 'Y'

ELSE 'N'

END AS PartialFillFlag

FROM

The SELECT query is composed of two subqueries joined together. The first subquery

returns a single row for every item in inventory. Considering the example with Jill, Mike,

and Dave, if there are nine black Mountain-200 42-inch mountain bikes in inventory, this

query returns nine rows, each with a unique row number starting with 1. The query also

returns the LocationID, Shelf, and Bin, where the product is located:

(

SELECT ROW_NUMBER() OVER (PARTITION BY i.ProductID

ORDER BY i.ProductID,

i.LocationID,

i.Shelf,

i.Bin) AS Num,

i.ProductID,

i.LocationID,

i.Shelf,

i.Bin,

i.Quantity

FROM

(

SELECT ProductID,

LocationID,

Shelf,

Bin,

Quantity

CHAPTER 5 ■ USER-DEFINED FUNCTIONS106

794Xch05final.qxd  3/29/07  4:43 PM  Page 106



FROM Production.ProductInventory

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND Quantity

) i

INNER JOIN Production.ProductInventory p

ON i.ProductID = p.ProductID

AND i.LocationID = p.LocationID

AND i.Shelf = p.Shelf

AND i.Bin = p.Bin

) Inventory_Details

This subquery is inner-joined to a second subquery that likewise breaks up quanti-

ties of items in all sales-order details into single rows. Again, looking at the example of

Jill, Mike, and Dave, this query will break each of their orders into five rows. The rows are

assigned unique numbers for each product; so in the example, the rows for each black

Mountain-200 42-inch mountain bike our three customers ordered will be numbered

individually from 1 to 15:

INNER JOIN

(

SELECT ROW_NUMBER() OVER (PARTITION BY o.ProductID

ORDER BY o.ProductID,

o.SalesOrderID) AS Num,

o.ProductID,

o.SalesOrderID,

o.OrderQty

FROM

(

SELECT ProductID,

SalesOrderID,

SalesOrderDetailID,

OrderQty

FROM Sales.SalesOrderDetail

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND OrderQty

) o

INNER JOIN Sales.SalesOrderDetail sod

ON o.SalesOrderID = sod.SalesOrderID

AND o.SalesOrderDetailID = sod.SalesOrderDetailID

AND o.ProductID = sod.ProductID

) Order_Details

ON Inventory_Details.ProductID = Order_Details.ProductID

AND Inventory_Details.Num = Order_Details.Num

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 107

794Xch05final.qxd  3/29/07  4:43 PM  Page 107



The rows of both subqueries are joined based on their ProductID numbers and the

unique row numbers assigned to each row of each subquery. This effectively assigns one

item from the inventory to fill exactly one item in each order.

The SELECT statement also requires a GROUP BY since we are counting the total number

of items to be pulled from each bin to fill each sales order, as opposed to returning the

raw inventory-to-sales order items on a one-to-one basis:

GROUP BY Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty;

Finally, the RETURN statement returns the @result table back to the caller as the

TVF result:

RETURN;

END;

The table returned by a table-valued function can be used in the WHERE clause of a

SQL SELECT query or in a JOIN clause. Listing 5-5 is a sample query that joins the example

TVF to the Production.Product table to get the product names and colors for each prod-

uct listed in the pull list.

Listing 5-5. Retrieving a Product Pull List

SELECT p.Name AS ProductName,

p.ProductNumber,

p.Color,

ppl.SalesOrderID,

ppl.ProductID,

ppl.LocationID,

ppl.Shelf,

ppl.Bin,

ppl.QuantityInBin,

ppl.QuantityOnOrder,

ppl.QuantityToPull,

ppl.PartialFillFlag

FROM Production.Product p

INNER JOIN dbo.fnProductPullList() ppl

ON p.ProductID = ppl.ProductID

CHAPTER 5 ■ USER-DEFINED FUNCTIONS108

794Xch05final.qxd  3/29/07  4:43 PM  Page 108



Figure 5-3 shows a sample of output from the previous query.

Inline Table-Valued Functions
As if scalar UDFs and multistatement table-valued functions aren’t enough to get you

excited about T-SQL’s user-defined function capabilities, here comes a third form of

UDF known as the inline table-valued function. Inline table-valued functions are simi-

lar to multistatement table-valued functions in that they return a table.

However, where a multistatement TVF can contain multiple SQL statements and

control-of-flow statements in the function body, the inline function consists of only a

single SELECT query. The inline TVF is literally “inlined” by SQL Server (expanded by the

query optimizer as part of the SELECT statement that contains it), much like a view. In

fact inline TVFs are sometimes referred to as parameterized views. The following is the

format for declaring an inline TVF:

CREATE FUNCTION [ schema_name. ] function_name

( [ { @parameter_name [ AS ] [ type_schema_name. ] parameter_data_type

[ = default ] }

[ , ...n ] ]

)

RETURNS TABLE

[ WITH function_option [ , ...n ] ]

[ AS ]

RETURN [ ( ] select_stmt [ ) ]

Since the inline TVF returns the result of a single SELECT query, you don’t need to

bother with declaring a table variable or defining its structure. The structure is implied by

the select_stmt that makes up the function.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 109

Figure 5-3. Sample output from dbo.fnProductPullList join query

794Xch05final.qxd  3/29/07  4:43 PM  Page 109



The sample inline TVF we’ll introduce performs a function commonly implemented

by developers in T-SQL using control-of-flow statements. Many times a developer will

determine that a function or a stored procedure requires a large, or variable, number of

parameters be passed in to accomplish a particular goal. The ideal situation would be to

pass an array as a parameter. T-SQL doesn’t provide an “array” data type per se, but you

can split a comma-delimited list of strings into a table to simulate an array. This gives

you the flexibility of an “array” that you can use in SQL joins.

While you could do this using a multistatement table-valued function and control-

of-flow statements such as a WHILE loop, you’ll get better performance if you let SQL

Server do the heavy lifting with a “set-based” version. The sample function will accept

a comma-delimited VARCHAR(MAX) string and return a table with two columns:

• The Num column contains a unique number for each element of the array, counting

from 1 to the number of elements in the comma-delimited string.

• The Element column contains the substrings extracted from the comma-delimited list.

The sample inline TVF begins much like the others. Listing 5-6 is the full code listing.

Listing 5-6. Comma-Separated String Splitting Function

CREATE FUNCTION dbo.fnCommaSplit (@String NVARCHAR(MAX))

RETURNS TABLE

AS

RETURN

(

WITH Splitter(Num, Element)

AS

(

SELECT Num,

SUBSTRING(@String,

CASE Num

WHEN 1 THEN 1

ELSE Num + 1

END,

CASE CHARINDEX(N',', @String, Num + 1)

WHEN 0 THEN LEN(@String) - Num + 1

ELSE CHARINDEX(N',', @String, Num + 1) - Num -

CASE

WHEN Num > 1 THEN 1

ELSE 0

END

END

CHAPTER 5 ■ USER-DEFINED FUNCTIONS110

794Xch05final.qxd  3/29/07  4:43 PM  Page 110



) AS Element

FROM dbo.Numbers

WHERE Num <= LEN(@String)

AND (SUBSTRING(@String, Num, 1) = N','

OR Num = 1)

)

SELECT ROW_NUMBER() OVER (ORDER BY Num) AS Num,

Element

FROM Splitter

);

We start by declaring the function name and parameters and specifying that the

function returns a TABLE:

CREATE FUNCTION dbo.fnCommaSplit (@String VARCHAR(MAX))

RETURNS TABLE

WITH SCHEMABINDING

AS

The body of the function is a single RETURN statement followed by a SELECT query. For

this example, we will create a CTE (see Chapter 3 for more on CTEs) called Splitter to

perform the actual splitting of the comma-delimited list. The query of the CTE returns

each substring from the comma-delimited list. CASE expressions are required to handle

two special cases:

• The first item in the list because it is not preceded by a comma

• The last item in the list because it is not followed by a comma

RETURN

(

WITH Splitter(Num, Element)

AS

(

SELECT Num,

SUBSTRING(@String,

CASE Num

WHEN 1 THEN 1

ELSE Num + 1

END,

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 111

794Xch05final.qxd  3/29/07  4:43 PM  Page 111



CASE CHARINDEX(N',', @String, Num + 1)

WHEN 0 THEN LEN(@String) - Num + 1

ELSE CHARINDEX(N',', @String, Num + 1) - Num -

CASE

WHEN Num > 1 THEN 1

ELSE 0

END

END

) AS Element

FROM dbo.Numbers

The query’s WHERE clause ensures the function stays within bounds of its comma-

delimited string parameter and forces separations on the commas within the string:

WHERE Num <= LEN(@String)

AND (SUBSTRING(@String, Num, 1) = N','

OR Num = 1)

)

Finally, we select each ROW_NUMBER and Element from the CTE as the result we will

return to the caller:

SELECT ROW_NUMBER() OVER (ORDER BY Num) AS Num,

Element

FROM Splitter

);

We can use this inline TVF to split up the Jackson family, as shown in Listing 5-7.

Listing 5-7. Splitting Up the Jacksons

SELECT * FROM dbo.fnCommaSplit

('Michael,Tito,Jermaine,Marlon,Rebbie,Jackie,Janet,La Toya,Randy');

Or, possibly more usefully, we can use it to pull descriptions for a specific set of

AdventureWorks products, good for front-end web page displays or business reports,

as shown in Listing 5-8.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS112

794Xch05final.qxd  3/29/07  4:43 PM  Page 112



Listing 5-8. Using the fnCommaSplit Function

SELECT n.Num,

p.Name,

p.ProductNumber,

p.Color,

p.Size,

p.SizeUnitMeasureCode,

p.StandardCost,

p.ListPrice

FROM Production.Product p

INNER JOIN dbo.fnCommaSplit('FR-R38R-52,FR-M94S-52,FR-M94B-44,BK-M68B-38') n

ON p.ProductNumber = n.Element;

Figure 5-4 shows the result of this query.

Restrictions on User-Defined Functions
T-SQL imposes some restrictions on user-defined functions. This section discusses these

restrictions and some of the reasoning behind them.

Nondeterministic Functions

T-SQL does not allow the use of nondeterministic functions in a user-defined function.

A deterministic function is one that returns the same value every time when passed a given

set of parameters (or no parameters). A nondeterministic function can return different

results with the same set of parameters passed to it. An example of a deterministic function

is ABS, the absolute value function. Every time—and no matter how many times—you call

ABS(-10) the result is always 10. This is the basic idea behind determinism.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 113

Figure 5-4. Result of dbo.fnCommaSplit inline function sample

794Xch05final.qxd  3/29/07  4:43 PM  Page 113



On the flip side, there are functions that do not return the same value despite the fact

that you pass in the same parameters (or no parameters). Built-in functions such as RAND

and NEWID are nondeterministic because they return a different result every time they are

called. One hack that people sometimes use to try to circumvent this restriction is creat-

ing a view that invokes the nondeterministic function and selecting from that view inside

their UDFs. While this may work to some extent, it is not recommended, as it could fail

to produce the desired results or cause a significant performance hit since SQL won’t be

able to cache or effectively index the results of nondeterministic functions. Also, if you

create a computed column that tries to reference your UDF, the nondeterministic func-

tions you are trying to access via your view can produce unpredictable results. If you

need to use nondeterministic functions in your application logic, stored procedures

(discussed in the Chapter 6) are probably the better alternative.

■Note In SQL Server 2000, the GETDATE could not be used in a user-defined function because it was con-
sidered nondeterministic. This restriction has been removed from SQL Server 2005, and GETDATE can now
be used in your user-defined functions.

State of the Database

One of the restrictions on UDFs is that they are not allowed to change the state of the

database or cause other side effects. The prohibition on side effects in UDFs means that

you can’t even PRINT from within a UDF. It also means that while you can query database

tables and resources, you can’t INSERT, UPDATE or DELETE from database tables. Some other

restrictions include the following:

• You can’t create temporary tables within a UDF. You can, however, create and

modify table variables in a UDF.

• You cannot CREATE, ALTER, or DROP regular database tables from within a UDF.

• Dynamic SQL is not allowed, although extended stored procedures (XPs) and 

SQLCLR functions can be called.

• A table-valued function can return only a single table/result set. If you need

to return more than one table/result set, you might be better off with a stored

procedure.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS114

794Xch05final.qxd  3/29/07  4:43 PM  Page 114



■Caution Although XPs and SQLCLR functions can be called from a UDF, Microsoft warns against
depending on results returned by XPs and SQLCLR functions that cause side effects. If your XP or SQLCLR
function modifies tables, alters the database schema, accesses the file system, changes system settings,
or utilizes nondeterministic resources external to the database, you might get unpredictable results from
your UDF. If you need to change database state or rely on side effects in your server-side code, consider
using a SQLCLR function (discussed in Chapter 14), or a regular stored procedure (discussed in Chapter 6).

Variables and table variables created within UDFs have a well-defined scope and

cannot be accessed outside of the UDF. Even if you have a recursive UDF, you cannot

access the variables and table variables that were previously declared and assigned val-

ues by the calling function.

■Note The prohibition on UDF side effects extends to the SQL Server display and error systems. This
means that you cannot use the T-SQL PRINT or RAISERROR statements within a UDF. The PRINT and
RAISERROR statements are useful in debugging stored procedures and T-SQL code batches, but unavailable
for use in UDFs. One workaround that I often use is to temporarily move the body of my UDF code to a stored
procedure while testing. This gives me the ability to use PRINT and RAISERROR while testing and debugging
code in development.

Summary
In this chapter I discussed the three types of T-SQL user-defined functions and provided

working examples of the different types:

• Scalar user-defined functions

• Multistatement table-valued functions

• Inline table-valued functions

I also discussed the following:

• Recursion in UDFs

• Procedural code in UDFs

• UDF determinism and side effects

In the next chapter we will look at another tool that allows procedural T-SQL code to

be consolidated into procedural units: stored procedures.

CHAPTER 5 ■ USER-DEFINED FUNCTIONS 115

794Xch05final.qxd  3/29/07  4:43 PM  Page 115



794Xch05final.qxd  3/29/07  4:43 PM  Page 116



Stored Procedures

Stored procedures (SPs) have been a part of T-SQL from the beginning. SPs provide

a means for creating server-side subroutines written in T-SQL. This chapter begins with

a discussion of what SPs are and why you might want to use them, and follows up with

how to actually create and use T-SQL SPs.

Introducing Stored Procedures
SPs are code units composed of one or more T-SQL statements and stored on the server.

SPs give you the ability to extend the T-SQL language by adding your own procedural

subroutines to your SQL Server databases. T-SQL SPs are declared with the CREATE

PROCEDURE statement:

CREATE PROCEDURE [ schema_name. ] procedure_name [ ;number ]

[ ( ] [ { @parameter [ type_schema_name. ] data_type }

[ VARYING ] [ = default ] [ OUT | OUTPUT ] ] [ , ...n ] [ ) ]

[ WITH procedure_option [ , ...n ] ]

[ FOR REPLICATION ]

AS

{ sql_statement [;][ ... n ] }

An SP declaration begins with the CREATE PROCEDURE keywords and the name of the

SP. The name can specify the schema_name, procedure_name, and an optional number. The

schema_name should always be included to ensure that your SP is created in the proper

schema. The procedure_name is the name you assign to the SP. You can add the optional

semicolon and number after the procedure_name to group SPs of the same name.

117

C H A P T E R  6

794Xch06final.qxd  3/29/07  4:41 PM  Page 117



SPs, like the T-SQL user-defined functions discussed in Chapter 5, can accept parame-

ters from the caller. The parameters are specified in a list following the procedure_name.

Because they can be omitted altogether if they are assigned a default or referenced by name

by the caller, SP parameters prove to be far more flexible than UDF parameters. Parameter

names are specified by preceding them with an at (@) sign. They must follow the normal

rules for T-SQL identifiers, which I described in Chapter 1. Parameters can have default

values assigned in the declaration, by using = default in the declaration. 

Each parameter is specified as a specific type and can also be declared as OUTPUT or

with the VARYING keyword (for cursor parameters only). When calling SPs, you have two

choices: you can specify parameters by position or by name. If you specify an unnamed

parameter list, the values are assigned based on position. If you specify named parameters

in the format @parameter = value, they can be in any order. If your parameter specifies a

default value in its declaration, you don’t have to pass a value in for that parameter. Unlike

user-defined functions, SPs don’t require the DEFAULT keyword as a placeholder to specify

default values. Just leaving a parameter out when you call the SP will apply the default

value to that parameter.

CHAPTER 6 ■ STORED PROCEDURES118

SP NAMES

Don’t use the sp_ prefix when naming your SPs. SPs that begin with sp_ follow a different name reso-
lution process than most SPs. SQL Server begins searching for SPs with the sp_ prefix in the master
database. Using the sp_ prefix to name your own SPs will result in cache misses as SQL Server tries
to locate your SP by name in the cache. This can adversely affect your server’s performance.

The optional semicolon (;) and number following the procedure_name in the SP definition allows
you to group SPs of the same name. If you defined two SPs as dbo.MyProc;1 and dbo.MyProc;2, they
would belong to the same group. Grouping allows you to drop an entire group of SPs with one DROP
PROCEDURE statement. Using this option can be more confusing than it is useful, and I personally rec-
ommend naming and managing all of your SPs on an individual basis. Microsoft recommends avoiding
this feature, as it will be removed in a future version of SQL Server.

794Xch06final.qxd  3/29/07  4:41 PM  Page 118



Unlike user-defined functions that can return results only via the RETURN statement,

SPs can communicate with the caller in a variety of ways:

• The SP RETURN statement can return an INT value to the caller. Unlike user-defined

functions, SPs do not need a RETURN statement. If the RETURN statement is left out

of the SP, zero is returned by default.

■Note Since the SP RETURN statement can’t return tables, character data, decimal numbers, and so on,
it is normally used only to return an INT status or error code. This is a good convention to follow, since most
developers who use your SPs will be expecting it. The normal practice is to return a value of zero to indicate
success and a nonzero value or error code to indicate an error or failure.

• SPs don’t have the same restrictions on database side effects and determinism as

do user-defined functions. SPs can read, write, delete, and update permanent

tables. The caller and SP can communicate through the use of permanent tables.

• When a temporary table is created in an SP, that temporary table is available to any

SPs called from that SP. Furthermore, they are accessible to any SPs subsequently

called by those SPs. As an example, if dbo.MyProc1 creates a temporary table named

#Temp and then calls dbo.MyProc2, dbo.MyProc2 will be able to access #Temp as well.

CHAPTER 6 ■ STORED PROCEDURES 119

SP OUTPUT PARAMETERS

I previously said that the text, ntext, and image data types should not be used anymore. Here’s
one more reason to abandon them: they cannot be used as OUTPUT parameters for T-SQL SPs. If you
need to use large-object OUTPUT types, use the newer varchar(max), nvarchar(max), and
varbinary(max) instead.

Output parameters must be followed by the OUTPUT keyword in the declaration and when calling
the SP. If you are passing parameters by name in your SP call, you can use the following format for out-
put parameters:

@parameter = @variable OUTPUT

Regular parameters can be passed by name similarly, but without the OUTPUT keyword:

@parameter = [ value | @variable ]

Keep these restrictions in mind as you create SPs with OUTPUT parameters.

794Xch06final.qxd  3/29/07  4:41 PM  Page 119



If dbo.MyProc2 then calls dbo.MyProc3, dbo.MyProc3 will also have access to the same

#Temp temporary table. This provides a useful method of passing an entire table of

temporary results to an SP for further processing.

• Output parameters are the primary method of retrieving scalar results from an SP.

Parameters are specified as output parameters with the OUTPUT keyword.

• To return table type results from an SP, the SP can return one or more result sets.

Result sets are like “virtual tables” that can be accessed by the caller. Unlike views,

updates to these result sets by applications do not change the underlying tables

used to generate them. Also unlike table-valued functions and inline functions,

which return a single table, SPs can return multiple result sets with a single call.

You can call an SP without the EXECUTE keyword if it is the first statement in a

batch. For instance, if you have an SP named dbo.MyProc, you can call it like this:

dbo.MyProc;

You can invoke an SP from anywhere in a batch with the EXECUTE statement. Calling it

like this will discard the return value:

EXECUTE dbo.MyProc;

If you need the return value you can use a variation of EXECUTE to assign the return

value to an INT variable:

EXECUTE @variable = dbo.MyProc;

Listing 6-1 is a simple example to demonstrate SP parameter passing.

Listing 6-1. Sample SP Parameter Passing and Execution

CREATE PROCEDURE dbo.GetEmployee (@Emp_ID INT = 199,

@Email_Address NVARCHAR(50) OUTPUT,

@Full_Name NVARCHAR(100) OUTPUT)

AS

BEGIN

DECLARE @i INT;

SELECT @Email_Address = c.EmailAddress,

@Emp_ID = e.EmployeeID,

@Full_Name = c.LastName + ' ' + c.MiddleName + ' ' + c.LastName

FROM HumanResources.Employee e

CHAPTER 6 ■ STORED PROCEDURES120

794Xch06final.qxd  3/29/07  4:41 PM  Page 120



INNER JOIN Person.Contact c

ON e.ContactID = c.ContactID

WHERE e.EmployeeID = @Emp_ID;

RETURN (

CASE

WHEN @Email_Address IS NULL THEN 1

ELSE 0

END );

END;

GO

DECLARE @Email NVARCHAR(50),

@Name NVARCHAR(100),

@Result INT;

EXECUTE @Result = dbo.GetEmployee 123, @Email OUTPUT, @Name OUTPUT;

SELECT @Result AS Result,

@Email AS Email,

@Name AS [Name];

The SP in the example, dbo.GetEmployee, accepts an employee ID number and

retrieves the email address and full name of that employee. If successful, 0 is returned

as the SP return value; otherwise 1 is returned. The email address and full name of the

employee are returned as output parameters. The sample call retrieves and displays the

information for employee number 123.

You can also specify options in your SP declaration by using the WITH keyword. The

options that can be used are the following:

• The ENCRYPTION option obfuscates the SP text and helps prevent unauthorized users

from accessing the obfuscated text.

• The RECOMPILE option prevents the SQL Server engine from caching the execution

plan for the SP. This option forces run-time compilation.

• The EXECUTE AS clause can be used to specify the context that the SP will run under.

Valid options for the EXECUTE AS clause are CALLER, SELF, OWNER, or user_name. The

EXECUTE AS clause for SP options work the same as the user-defined function

EXECUTE AS clause, described in Chapter 5.

Additionally, you can specify FOR REPLICATION to create an SP specifically for replica-

tion. An SP created with the FOR REPLICATION option can’t be executed on the subscriber.

FOR REPLICATION can’t be used with the WITH RECOMPILE option.

CHAPTER 6 ■ STORED PROCEDURES 121

794Xch06final.qxd  3/29/07  4:41 PM  Page 121



The body of the SP consists of one or more T-SQL statements following the AS key-

word. Unlike scalar or table-valued functions, you don’t have to wrap the body of your SP

in the BEGIN and END keywords.

■Tip You don’t have to wrap the body of your SP in a BEGIN...END block, but I personally think it makes the
code more readable when the body of the SP is wrapped in BEGIN...END.

ALTER PROCEDURE and DROP PROCEDURE 
The ALTER PROCEDURE statement allows you to modify the code for an SP without first

dropping it. The syntax is the same as the CREATE PROCEDURE statement, except that the

keywords ALTER PROCEDURE are used in place of CREATE PROCEDURE. ALTER PROCEDURE, like

CREATE PROCEDURE, must be the first statement in a batch.

To delete a procedure from your database, use the DROP PROCEDURE statement. The

syntax for DROP PROCEDURE is the following:

DROP PROCEDURE { [ schema_name. ] procedure } [ ,...n ] ;

Note that you cannot specify the database or server name when dropping an SP. 

You must be in the database containing the SP in order to drop it.

Why SPs?
Debates have raged through the years over the role and usefulness of SQL Server SPs.

SPs cache and reuse query execution plans, which provided significant performance

advantages in SQL Server 6.5 and 7.0. Though SQL Server 2000 and 2005 SPs offer the

same execution plan caching and reuse, the luster of this benefit faded somewhat. Since

SQL Server 2000’s release, query optimization and caching and reuse of query execution

plans for parameterized queries have been improved. Query optimization has been

improved even more in SQL Server 2005. SPs still offer the performance benefit of not

having to send large and complex queries over the network, but the primary benefit of

query execution plan caching and reuse is not as enticing as it once was.

CHAPTER 6 ■ STORED PROCEDURES122

794Xch06final.qxd  3/29/07  4:41 PM  Page 122



So why use SPs? Apart from the performance benefit, which is not as big a factor in

these days of highly efficient parameterized queries, SPs offer code modularization.

Creating code modules helps reduce redundant code, eliminating potential maintenance

nightmares caused by duplicate code stored in multiple locations. SPs also have the

advantage of centralized administration of portions of your database code. With SPs you

can use SQL Server security to assign rights or deny access to your database code and

queries. In addition, SPs can return multiple result sets with a single procedure call, such

as the sp_help system SP that is demonstrated in Figure 6-1.

CHAPTER 6 ■ STORED PROCEDURES 123

HOW DOES QUERY EXECUTION PLAN CACHING AND REUSE WORK?

When a query is submitted to SQL Server, the SQL Server engine first checks to see whether a query
plan for that exact query already exists. The engine looks for an exact match of the query in the cache.
By exact, I’m referring to the fact that the cache match is case-sensitive and sensitive to whitespace.
If any character of the query is different, the engine will not locate the cached execution plan. As an
example, the following two queries produce the same results in a database with a case-insensitive
collation, but they result in two copies of the query execution plan being compiled and cached because
of differences in case:

SELECT * FROM humanresources.department;

SELECT * FROM HUMANRESOURCES.DEPARTMENT;

When the SQL Server engine can’t locate a query execution plan in the cache, it compiles the
query into a query execution plan that it then caches for future reuse.

If a matching query plan is found, however, the SQL Server engine will check various counters it
stores with each query execution plan to determine whether the tables referenced have reached the
recompilation threshold, a number indicating the table has changed enough to warrant a recompilation.
For regular permanent tables, the recompilation threshold is 500 if the table contains 500 or fewer rows
when the query plan is compiled, or 500 + (0.20 number of rows) if the number of rows is greater than
500 when the plan is compiled. Other actions that can cause a recompilation of a cached query execu-
tion plan include schema changes to objects that are referenced by your query, changes in statistics on
a table, and running the sp_recompile system stored procedure on a database object. Many T-SQL
SET options, when changed, will also cause the recompilation of a cached query execution plan.

From the front end, you can help minimize query plan recompilations by parameterizing your
queries and SP calls instead of dynamically building them as long strings. When you dynamically build
a query string and embed the parameter values as part of that string, you dramatically decrease the
odds (to near zero) of SQL Server locating a matching query execution plan in the cache. Chapter 15
discusses query parameterization in .NET code.

794Xch06final.qxd  3/29/07  4:41 PM  Page 123



Using SPs, you can effectively build an application programming interface (API) for

your database. Creation and adherence to such an API can help ensure consistent access

across applications and make development easier for front-end and client-side develop-

ers who need to access your database.

So what are the arguments against SPs? The major argument tends to be that they

“tightly couple your code to the RDBMS.” A code base that is tightly integrated with SQL

Server 2005 will be more difficult to port over to another RDBMS (such as Oracle, DB2, or

MySQL) in the future. A loosely coupled application, on the other hand, is much easier

to port to different RDBMSs.

The downside to this portability is that it can result in databases and applications

that are slow and inefficient. To get true portability out of any RDBMS system you have

to take great care to code everything in plain vanilla SQL, meaning that a lot of the

platform-specific functionality is off-limits. I’m not going to delve too deeply into a dis-

cussion of the pluses and minuses of SPs. In the end, the balance between portability

and performance needs to be determined by your business needs and corporate IT

policy on a per-project basis.

SPs in Action
A common application of SPs is to create a layer of abstraction for various data manipu-

lation functions. Consider the example in Listing 6-2 of an upsert (update or insert) SP.

CHAPTER 6 ■ STORED PROCEDURES124

Figure 6-1. sp_help returns multiple result sets

794Xch06final.qxd  3/29/07  4:41 PM  Page 124



Listing 6-2. Upsert_CountryRegion SP

CREATE PROCEDURE dbo.Upsert_CountryRegion (@Code NVARCHAR(3),

@Name NVARCHAR(50))

AS

BEGIN

DECLARE @i INT,

@err INT;

SELECT @i = COUNT(*)

FROM Person.CountryRegion

WHERE CountryRegionCode = @Code;

IF @i = 0

BEGIN

INSERT INTO Person.CountryRegion (CountryRegionCode,

[Name],

ModifiedDate)

VALUES (@Code, @Name, CURRENT_TIMESTAMP);

SELECT @err = @@error;

END

ELSE

BEGIN

UPDATE Person.CountryRegion

SET [Name] = @Name,

ModifiedDate = CURRENT_TIMESTAMP

WHERE CountryRegionCode = @Code;

SELECT @err = @@error;

END;

RETURN @err;

END;

GO

■Note The ANSI SQL:2003 standard includes a MERGE statement that performs the same function as the
upsert type of SP. The prerelease versions of SQL Server 2005 included the MERGE statement. Though it was
well-publicized during the prerelease period, the MERGE statement was unceremoniously dropped from the
production version. We can only hope that Microsoft brings it back sometime in the near future.

The Upsert_CountryRegion SP requires two parameters be passed in: a country/region

code and the name of that country. The SP sets the default country code to US and the

default country name to United States:

CHAPTER 6 ■ STORED PROCEDURES 125

794Xch06final.qxd  3/29/07  4:41 PM  Page 125



CREATE PROCEDURE dbo.Upsert_CountryRegion (@Code NVARCHAR(3) = N'US',

@Name NVARCHAR(50) = N'United States')

AS

The body of the SP first checks to see whether the country/region code passed in

already exists in the Person.CountryRegion table:

BEGIN

DECLARE @i INT,

@err INT;

SELECT @i = COUNT(*)

FROM Person.CountryRegion

WHERE CountryRegionCode = @Code;

If the country/region code does not exist yet, the @i variable will be 0. In that case,

the SP will INSERT the new country information into the Person.CountryRegion table:

IF @i = 0

BEGIN

INSERT INTO Person.CountryRegion (CountryRegionCode,

[Name],

ModifiedDate)

VALUES (@Code, @Name, CURRENT_TIMESTAMP);

SELECT @err = @@error;

END

Notice the SP grabs the value from the @@error system function immediately after the

INSERT statement. This retrieves the error code if the INSERT statement generates an error,

or 0 if it succeeds.

If the country/region code already exists in the Person.CountryRegion table, the SP

performs an UPDATE on the table:

ELSE

BEGIN

UPDATE Person.CountryRegion

SET [Name] = @Name,

ModifiedDate = CURRENT_TIMESTAMP

WHERE CountryRegionCode = @Code;

SELECT @err = @@error;

END;

CHAPTER 6 ■ STORED PROCEDURES126

794Xch06final.qxd  3/29/07  4:41 PM  Page 126



Again the SP retrieves the value from @@error immediately after the UPDATE state-

ment. Finally, it returns the error code generated to the caller (if an error occurs), or 0 if

no error occurs:

RETURN @err;

END;

To test the SP, AdventureWorks will expand the list of countries it does business in to

include the country of Isla de Muerta (a movie reference for all you Captain Jack Sparrow

fans out there):

DECLARE @result INT;

EXEC @result = dbo.Upsert_CountryRegion @Code = 'IDM',

@Name = 'Isla de Muerta';

SELECT N'Result Code = ' + CAST(@result AS NVARCHAR(10));

SELECT CountryRegionCode,

[Name], 

ModifiedDate

FROM Person.CountryRegion;

Figure 6-2 shows the results of the Upsert_CountryRegion SP example.

For the next example, assume that AdventureWorks management has decided to add

a database-driven feature to its website. The feature they want is a “recommended prod-

ucts list” that will appear when customers add products to their online shopping carts.

Here are the business rules that management has decided you should implement:

CHAPTER 6 ■ STORED PROCEDURES 127

Figure 6-2. AdventureWorks is open for business in Isla de Muerta.

794Xch06final.qxd  3/29/07  4:41 PM  Page 127



• The items that appear on other customer orders should be returned as recom-

mended products.

• Products that are in the same category as the product the customer selected

should not be recommended. In other words, if a customer has added a bicycle

to his order, other bicycles should not be listed.

• The default ProductID should be 776, a Mountain-100 black 42-inch bike.

• The recommended products should be listed in descending order of the total

quantity other customers have ordered. So the best-selling items will be listed first.

Listing 6-3 is the SP that implements all of AdventureWorks’s business rules:

Listing 6-3. Recommended Product List SP

CREATE PROCEDURE dbo.GetProductRecommendations (@ProductID INT = 776)

AS

BEGIN

WITH RecommendedProducts (TotalQtyOrdered,

ProductID,

TotalDollarsOrdered,

ProductSubCategoryID)

AS

(

SELECT SUM(od2.OrderQty) AS TotalQtyOrdered,

od2.ProductID,

SUM(od2.UnitPrice * od2.OrderQty) AS TotalDollarsOrdered,

p1.ProductSubCategoryID

FROM Sales.SalesOrderDetail od1

INNER JOIN Sales.SalesOrderDetail od2

ON od1.SalesOrderID = od2.SalesOrderID

INNER JOIN Production.Product p1

ON od2.ProductID = p1.ProductID

WHERE od1.ProductID = @ProductID

AND od2.ProductID <> @ProductID

GROUP BY od2.ProductID, p1.ProductSubcategoryID

)

CHAPTER 6 ■ STORED PROCEDURES128

794Xch06final.qxd  3/29/07  4:41 PM  Page 128



SELECT TOP 10 ROW_NUMBER() OVER (ORDER BY rp.TotalQtyOrdered DESC) AS Rank,

rp.TotalQtyOrdered,

rp.ProductID,

rp.TotalDollarsOrdered,

p.[Name]

FROM RecommendedProducts rp

INNER JOIN Production.Product p

ON rp.ProductID = p.ProductID

WHERE rp.ProductSubcategoryID <>

(

SELECT ProductSubcategoryID

FROM Production.Product

WHERE ProductID = @ProductID

)

ORDER BY TotalQtyOrdered DESC;

RETURN 0;

END;

GO

The SP begins with a declaration that accepts a single parameter, @ProductID. The

default @ProductID is set to 776, per AdventureWorks management team’s rules:

CREATE PROCEDURE dbo.GetProductRecommendations (@ProductID INT = 776)

AS

Next is a CTE that will return the TotalQtyOrdered, ProductID, TotalDollarsOrdered,

and ProductSubCategoryID for each product:

BEGIN

WITH RecommendedProducts (TotalQtyOrdered,

ProductID,

TotalDollarsOrdered,

ProductSubCategoryID)

AS

In the body of the CTE the Sales.SalesOrderDetail table is joined to itself based on

SalesOrderID. A join to the Production.Product table is also included to get each product’s

SubcategoryID. The point of the self-join is to grab the total quantity ordered (OrderQty)

and the total dollars ordered (UnitPrice * OrderQty) for each product.

The query is designed to include only orders that contain the product passed in via

@ProductID in the WHERE clause, and it also eliminates results for @ProductID itself from the

final results. All of the results are grouped by ProductID and ProductSubcategoryID:

CHAPTER 6 ■ STORED PROCEDURES 129

794Xch06final.qxd  3/29/07  4:41 PM  Page 129



(

SELECT SUM(od2.OrderQty) AS TotalQtyOrdered,

od2.ProductID,

SUM(od2.UnitPrice * od2.OrderQty) AS TotalDollarsOrdered,

p1.ProductSubCategoryID

FROM Sales.SalesOrderDetail od1

INNER JOIN Sales.SalesOrderDetail od2

ON od1.SalesOrderID = od2.SalesOrderID

INNER JOIN Production.Product p1

ON od2.ProductID = p1.ProductID

WHERE od1.ProductID = @ProductID

AND od2.ProductID <> @ProductID

GROUP BY od2.ProductID, p1.ProductSubcategoryID

)

The final part of the CTE excludes products that are in the same category as the item

passed in by @ProductID. It then limits the results to the top ten and numbers the results

from highest to lowest by TotalQtyOrdered. It also joins on the Production.Product table

to get each product’s name:

SELECT TOP 10 ROW_NUMBER() OVER (ORDER BY rp.TotalQtyOrdered DESC) AS Rank,

rp.TotalQtyOrdered,

rp.ProductID,

rp.TotalDollarsOrdered,

p.[Name]

FROM RecommendedProducts rp

INNER JOIN Production.Product p

ON rp.ProductID = p.ProductID

WHERE rp.ProductSubcategoryID <>

(

SELECT ProductSubcategoryID

FROM Production.Product

WHERE ProductID = @ProductID

)

ORDER BY TotalQtyOrdered DESC;

Finally, it returns 0 to the caller as the return code:

RETURN 0;

END;

CHAPTER 6 ■ STORED PROCEDURES130

794Xch06final.qxd  3/29/07  4:41 PM  Page 130



Figure 6-3 shows the result set of a recommended product list for people who bought

a Mountain-100 silver 44-inch bike (ProductID = 773):

EXECUTE dbo.GetProductRecommendations 773;

Implementing this business logic in an SP provides a layer of abstraction that makes

it easier to use from front-end applications. Front-end application programmers don’t

need to worry about the details of which tables need to be accessed, how they need to be

joined, and so on. All your application developers need to know to utilize this logic from

the front end is that they need to pass the SP a ProductID number and it will return the

relevant information in a well-defined result set.

The same interface can be reused if you want to use this same logic elsewhere. Addi-

tionally, if you need to change the business logic, it can be done one time, in one place.

Consider what happens if the AdventureWorks management decides to make sugges-

tions based on total dollars worth of a product ordered instead of the total quantity

ordered. Simply change the ORDER BY clause in one place:

ORDER BY TotalQtyOrdered DESC;

to the following

ORDER BY TotalDollarsOrdered DESC;

This simple change will do the trick. No additional changes to front-end code or logic

are required, since the interface to the SP remains the same.

CHAPTER 6 ■ STORED PROCEDURES 131

Figure 6-3. Recommended product list for ProductID 773

794Xch06final.qxd  3/29/07  4:41 PM  Page 131



Recursion in SPs
Like user-defined functions, SPs can call themselves recursively. There is a SQL Server–

imposed limit of 32 levels of recursion. To demonstrate recursion, we’ll solve a very old

puzzle.

The Towers of Hanoi puzzle consists of three pegs and a specified number of discs

of varying sizes that slide onto the pegs. The puzzle begins with the discs stacked on top

of one another, from smallest to largest, all on one peg. The start position of the puzzle

is shown in Figure 6-4.

The object of the puzzle is to move all of the discs from Tower A to Tower C. The trick

is that you can only move one disc at a time, and no larger disc may be stacked on top of

a smaller disc at any time. You can temporarily place discs on Tower B, the intermediate/

auxiliary tower, as necessary, but the same rules apply. Towers of Hanoi is often used as

an exercise in computer science classes to demonstrate recursion; we’ll solve it here to

demonstrate T-SQL SP recursion.

Our T-SQL implementation of the Towers of Hanoi puzzle will use five discs and dis-

play each move as the computer makes it. This implementation will demonstrate several

aspects of SPs discussed in this chapter. The following are some things to note:

• As mentioned previously, SPs can call themselves recursively. This is demonstrated

with the dbo.MoveDiscs SP.

• When default values are assigned to parameters in an SP declaration, values do

not have to be specified for them when the SP is called. This is demonstrated in

dbo.SolveTowers, which calls dbo.MoveDiscs.

CHAPTER 6 ■ STORED PROCEDURES132

Figure 6-4. The Towers of Hanoi puzzle start position

794Xch06final.qxd  3/29/07  4:41 PM  Page 132



• The scope of temporary tables created in an SP include that SP as well as any SPs

it calls. This is demonstrated in dbo.SolveTowers, where three temporary tables are

created and other SPs are called. The SPs called by dbo.SolveTowers, and those

called by those SPs (and so on), can also access these same temporary tables.

• The dbo.MoveDiscs SP demonstrates output parameters. The SP uses an output

parameter to update the count of the total number of moves performed after

a move.

The T-SQL Towers of Hanoi puzzle solution is shown in Listing 6-4.

Listing 6-4. The Towers of Hanoi Puzzle

-- This stored procedure displays all the discs in the appropriate

-- towers.

CREATE PROCEDURE dbo.ShowTowers

AS

BEGIN

-- Each disc is displayed as a series of asterisks (*), centered, with

-- the appropriate width. Using FULL OUTER JOIN allows us to show all

-- three towers side by side in a single query.

SELECT REPLICATE(' ', COALESCE(5 - a.Disc, 0)) +

REPLICATE('**', COALESCE(a.Disc, 0)) AS Tower_A,

REPLICATE(' ', COALESCE(5 - b.Disc, 0)) +

REPLICATE('**', COALESCE(b.Disc, 0)) AS Tower_B,

REPLICATE(' ', COALESCE(5 - c.Disc, 0)) +

REPLICATE('**', COALESCE(c.Disc, 0)) AS Tower_C

FROM #TowerA a

FULL OUTER JOIN #TowerB b

ON a.Disc = b.Disc

FULL OUTER JOIN #TowerC c

ON a.Disc = b.Disc;

END;

GO

-- This SP moves a single disc from the specified source tower to the

-- specified destination tower.

CREATE PROCEDURE dbo.MoveOneDisc (@Source NCHAR(1),

@Dest NCHAR(1))

AS

CHAPTER 6 ■ STORED PROCEDURES 133

794Xch06final.qxd  3/29/07  4:41 PM  Page 133



BEGIN

-- @Top is the smallest disc on the source tower

DECLARE @Top INT;

-- We use IF ... ELSE to get the smallest disc from the source tower

IF @Source = N'A'

BEGIN

-- This gets the smallest disc from Tower A

SELECT @Top = MIN(Disc)

FROM #TowerA;

-- Then we delete it

DELETE FROM #TowerA

WHERE Disc = @Top;

END ELSE IF @Source = N'B'

BEGIN

-- This gets the smallest disc from Tower B

SELECT @Top = MIN(Disc)

FROM #TowerB;

-- Then we delete it

DELETE FROM #TowerB

WHERE Disc = @Top;

END ELSE IF @Source = N'C'

BEGIN

-- This gets the smallest disc from Tower C

SELECT @Top = MIN(Disc)

FROM #TowerC;

-- Then we delete it

DELETE FROM #TowerC

WHERE Disc = @Top;

END

-- Print out the disc move performed

PRINT N'Move Disc #' + CAST(COALESCE(@Top, 0) AS NCHAR(1)) + N' from Tower ' +

@Source + N' to Tower ' + @Dest;

-- Perform the move: INSERT the disc from the source tower to the

-- destination tower

IF @Dest = N'A'

INSERT INTO #TowerA (Disc) VALUES (@Top);

ELSE IF @Dest = N'B'

INSERT INTO #TowerB (Disc) VALUES (@Top);

ELSE IF @Dest = N'C'

INSERT INTO #TowerC (Disc) VALUES (@Top);

-- Show the towers

CHAPTER 6 ■ STORED PROCEDURES134

794Xch06final.qxd  3/29/07  4:41 PM  Page 134



EXECUTE dbo.ShowTowers;

END;

GO

-- This SP moves multiple discs recursively

CREATE PROCEDURE dbo.MoveDiscs (@DiscNum INT,

@MoveNum INT OUTPUT,

@Source NCHAR(1) = N'A',

@Dest NCHAR(1) = N'C',

@Aux NCHAR(1) = N'B'

)

AS

BEGIN

-- If the number of discs to move is 0, we're done

IF @DiscNum = 0

PRINT N'Done';

ELSE

BEGIN

-- If the number of discs to move is 1, go ahead and move it

IF @DiscNum = 1

BEGIN

-- Increase the move counter

SELECT @MoveNum = @MoveNum + 1;

-- And move one disc from source to destination

EXEC dbo.MoveOneDisc @Source, @Dest

END

ELSE

BEGIN

DECLARE @n INT

SELECT @n = @DiscNum - 1

-- Move (@DiscNum - 1) discs from Source to Auxiliary tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Source, @Aux, @Dest;

-- Move 1 Disc from Source to Destination tower

EXEC dbo.MoveDiscs 1, @MoveNum OUTPUT, @Source, @Dest, @Aux;

-- Move (@DiscNum - 1) discs from Auxiliary to Destination tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Aux, @Dest, @Source;

END;

END;

END;

GO

CHAPTER 6 ■ STORED PROCEDURES 135

794Xch06final.qxd  3/29/07  4:41 PM  Page 135



-- This SP creates the three towers and populates Tower A with 5 discs

CREATE PROCEDURE dbo.SolveTowers

AS

BEGIN

-- SET NOCOUNT ON to eliminate system messages that will clutter up

-- the Message display

SET NOCOUNT ON

-- Create the three towers: Tower A = Source, Tower B = Auxiliary,

-- Tower C = Destination

CREATE TABLE #TowerA (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerB (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerC (Disc INT PRIMARY KEY NOT NULL);

-- Populate Tower A with 5 discs

INSERT INTO #TowerA (Disc) VALUES (1);

INSERT INTO #TowerA (Disc) VALUES (2);

INSERT INTO #TowerA (Disc) VALUES (3);

INSERT INTO #TowerA (Disc) VALUES (4);

INSERT INTO #TowerA (Disc) VALUES (5);

-- Initialize the move number to 0

DECLARE @MoveNum INT;

SELECT @MoveNum = 0;

-- Show the initial state of the towers

EXECUTE dbo.ShowTowers;

-- Solve the puzzle. Notice we don't need to

-- specify the parameters with defaults

EXECUTE dbo.MoveDiscs 5, @MoveNum OUTPUT;

-- How many moves did it take?

PRINT N'Solved in ' + CAST (@MoveNum AS NVARCHAR(10)) + N' moves.';

-- Drop the temp tables

DROP TABLE #TowerC;

DROP TABLE #TowerB;

DROP TABLE #TowerA;

-- SET NOCOUNT OFF before we exit

SET NOCOUNT OFF

END;

GO

To solve the puzzle, just run the following statement:

-- Solve the puzzle

EXECUTE dbo.SolveTowers;

Figure 6-5 is a screenshot of the processing as the discs are moved from tower to tower.

CHAPTER 6 ■ STORED PROCEDURES136

794Xch06final.qxd  3/29/07  4:41 PM  Page 136



And now for the code breakdown. The dbo.ShowTowers SP simply displays all of the

towers side by side as each disc is moved. The SP uses a couple of FULL OUTER JOINs to

generate this side-by-side presentation of the discs:

-- This stored procedure displays all the discs in the appropriate

-- towers.

CREATE PROCEDURE dbo.ShowTowers

AS

BEGIN

-- Each disc is displayed as a series of asterisks (*), centered, with

-- the appropriate width. Using FULL OUTER JOIN allows us to show all

-- three towers side by side in a single query.

SELECT REPLICATE(' ', COALESCE(5 - a.Disc, 0)) +

REPLICATE('**', COALESCE(a.Disc, 0)) AS Tower_A,

REPLICATE(' ', COALESCE(5 - b.Disc, 0)) +

REPLICATE('**', COALESCE(b.Disc, 0)) AS Tower_B,

REPLICATE(' ', COALESCE(5 - c.Disc, 0)) +

REPLICATE('**', COALESCE(c.Disc, 0)) AS Tower_C

FROM #TowerA a

FULL OUTER JOIN #TowerB b

ON a.Disc = b.Disc

FULL OUTER JOIN #TowerC c

ON a.Disc = b.Disc;

END;

CHAPTER 6 ■ STORED PROCEDURES 137

Figure 6-5. A disc is moved from Tower C to Tower A.

794Xch06final.qxd  3/29/07  4:41 PM  Page 137



As the Towers of Hanoi puzzle involves moving a single disc at a time from tower to

tower, the most basic routine you can create simply moves a disc from the specified source

tower to the specified destination tower. The code passes the names of the towers (A, B, or

C) into the dbo.MoveOneDisc SP, which uses them to decide which tables to modify:

-- This SP moves a single disc from the specified source tower to the

-- specified destination tower.

CREATE PROCEDURE dbo.MoveOneDisc (@Source NCHAR(1),

@Dest NCHAR(1))

AS

BEGIN

-- @Top is the smallest disc on the source tower

DECLARE @Top INT;

-- We use IF ... ELSE to get the smallest disc from the source tower

IF @Source = N'A'

BEGIN

-- This gets the smallest disc from Tower A

SELECT @Top = MIN(Disc)

FROM #TowerA;

-- Then we delete it

DELETE FROM #TowerA

WHERE Disc = @Top;

END ELSE IF @Source = N'B'

BEGIN

-- This gets the smallest disc from Tower B

SELECT @Top = MIN(Disc)

FROM #TowerB;

-- Then we delete it

DELETE FROM #TowerB

WHERE Disc = @Top;

END ELSE IF @Source = N'C'

BEGIN

-- This gets the smallest disc from Tower C

SELECT @Top = MIN(Disc)

FROM #TowerC;

-- Then we delete it

DELETE FROM #TowerC

WHERE Disc = @Top;

END

CHAPTER 6 ■ STORED PROCEDURES138

794Xch06final.qxd  3/29/07  4:41 PM  Page 138



-- Print out the disc move performed

PRINT N'Move Disc #' + CAST(COALESCE(@Top, 0) AS NCHAR(1)) + N' from Tower ' +

@Source + N' to Tower ' + @Dest;

-- Perform the move: INSERT the disc from the source tower to the

-- destination tower

IF @Dest = N'A'

INSERT INTO #TowerA (Disc) VALUES (@Top);

ELSE IF @Dest = N'B'

INSERT INTO #TowerB (Disc) VALUES (@Top);

ELSE IF @Dest = N'C'

INSERT INTO #TowerC (Disc) VALUES (@Top);

-- Show the towers

EXECUTE dbo.ShowTowers;

END;

The routine that is responsible for moving discs recursively is called dbo.MoveDiscs. It

accepts several parameters, including the number of discs to move (@DiscNum), the number

of the current move (@MoveNum), and the names of the source, destination, and auxiliary/

intermediate towers. If the dbo.MoveDiscs procedure is called with @DiscNum = 0, the puzzle

is solved. If the procedure is called with @DiscNum = 1, the procedure calls dbo.MoveOneDisc.

Other than that, dbo.MoveDiscs calls itself recursively with (@DiscNum - 1):

-- This SP moves multiple discs recursively

CREATE PROCEDURE dbo.MoveDiscs (@DiscNum INT,

@MoveNum INT OUTPUT,

@Source NCHAR(1) = N'A',

@Dest NCHAR(1) = N'C',

@Aux NCHAR(1) = N'B'

)

AS

BEGIN

-- If the number of discs to move is 0, we're done

IF @DiscNum = 0

PRINT N'Done';

ELSE

BEGIN

-- If the number of discs to move is 1, go ahead and move it

IF @DiscNum = 1

CHAPTER 6 ■ STORED PROCEDURES 139

794Xch06final.qxd  3/29/07  4:41 PM  Page 139



BEGIN

-- Increase the move counter

SELECT @MoveNum = @MoveNum + 1;

-- And move one disc from source to destination

EXEC dbo.MoveOneDisc @Source, @Dest

END

ELSE

BEGIN

DECLARE @n INT

SELECT @n = @DiscNum - 1

-- Move (@DiscNum - 1) discs from Source to Auxiliary tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Source, @Aux, @Dest;

-- Move 1 Disc from Source to Destination tower

EXEC dbo.MoveDiscs 1, @MoveNum OUTPUT, @Source, @Dest, @Aux;

-- Move (@DiscNum - 1) discs from Auxiliary to Destination tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Aux, @Dest, @Source;

END;

END;

END;

Finally, the dbo.SolveTowers SP creates the three temporary tables #TowerA, #TowerB,

and #TowerC. It then populates Tower A with five discs. This SP is the entry point for the

entire puzzle-solving program, so it displays the start position of the towers and calls

dbo.MoveDiscs to “get the ball rolling”:

-- This SP creates the three towers and populates Tower A with 5 discs

CREATE PROCEDURE dbo.SolveTowers

AS

BEGIN

-- SET NOCOUNT ON to eliminate system messages that will clutter up

-- the Message display

SET NOCOUNT ON

-- Create the three towers: Tower A = Source, Tower B = Auxiliary,

-- Tower C = Destination

CREATE TABLE #TowerA (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerB (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerC (Disc INT PRIMARY KEY NOT NULL);

-- Populate Tower A with 5 discs

INSERT INTO #TowerA (Disc) VALUES (1);

INSERT INTO #TowerA (Disc) VALUES (2);

INSERT INTO #TowerA (Disc) VALUES (3);

INSERT INTO #TowerA (Disc) VALUES (4);

INSERT INTO #TowerA (Disc) VALUES (5);

CHAPTER 6 ■ STORED PROCEDURES140

794Xch06final.qxd  3/29/07  4:41 PM  Page 140



-- Initialize the move number to 0

DECLARE @MoveNum INT;

SELECT @MoveNum = 0;

-- Show the initial state of the towers

EXECUTE dbo.ShowTowers;

-- Solve the puzzle. Notice we don't need to

-- specify the parameters with defaults

EXECUTE dbo.MoveDiscs 5, @MoveNum OUTPUT;

-- How many moves did it take?

PRINT N'Solved in ' + CAST (@MoveNum AS NVARCHAR(10)) + N' moves.';

-- Drop the temp tables

DROP TABLE #TowerC;

DROP TABLE #TowerB;

DROP TABLE #TowerA;

-- SET NOCOUNT OFF before we exit

SET NOCOUNT OFF

END;

Temporary Stored Procedures
In addition to normal SPs, T-SQL provides what are known as temporary stored procedures.

These SPs are created just like any other SP; the only difference is that the SP name must

begin with a number sign (#) for a local temporary stored procedure, or two number signs

(##) for a global temporary stored procedure.

While a normal SP remains a part of the database and schema it was created in until

it is explicitly dropped via the DROP PROCEDURE statement, temporary SPs are dropped

automatically. A local temporary stored procedure is visible only to the current session

CHAPTER 6 ■ STORED PROCEDURES 141

TOWERS OF HANOI AND THE END OF THE WORLD

The minimum number of moves required to solve the Towers of Hanoi puzzle increases exponentially
as you add discs to the puzzle. For instance, the five-disc example requires a minimum of 31 moves to
solve. Ten discs require 1,023 moves. With sixty-four discs, the required minimum number of moves
jumps to 18,446,744,073,709,552,000 moves. And that assumes that every single move you make is
perfect.

There is a legend that a group of monks has been working on solving the puzzle with sixty-four
discs since ancient times. According to the legend, when they complete the puzzle the world will end.
At a rate of 1 move per second, it will take about 600 billion years to solve the sixty-four-disc puzzle,
so we’re probably safe . . . for now.

794Xch06final.qxd  3/29/07  4:41 PM  Page 141



and is dropped when the current session ends (normally when the database connection

is closed). A global temporary stored procedure is visible to all connections and is auto-

matically dropped when the last session using it ends.

Normally, temporary stored procedures are used only for specialized solutions such

as database drivers. Open Database Connectivity (ODBC) drivers, for instance, make use

of temporary stored procedures to implement SQL Server connectivity functions.

Summary
This chapter discussed T-SQL SPs. Topics covered include the following:

• How to pass scalar values to an SP via input parameters

• SP execution query plan caching and the affects of recompilation on 

performance

• Retrieving data from SPs via return values, output parameters, and result sets

• SP recursion and the SQL Server-imposed 32-level limitation

• Using a temporary table to pass a table of data between SPs

• The difference between normal SPs and local and global temporary stored

procedures

While some of the performance and other advantages provided by SPs in previous

releases of SQL Server are not as pronounced in SQL Server 2005, the ability to modularize

server-side code, administer your T-SQL code base in a single location, and ease front-end

programming development still make SPs a powerful development tool in any T-SQL

developer’s toolkit.

The samples provided in this chapter are designed to demonstrate several aspects of

SP functionality in SQL Server 2005.

The next chapter covers another important part of T-SQL programming: triggers.

CHAPTER 6 ■ STORED PROCEDURES142

794Xch06final.qxd  3/29/07  4:41 PM  Page 142



Triggers

SQL Server provides triggers as a means of detecting database events and executing

T-SQL code in response. SQL Server 2005 implements two types of triggers: classic T-SQL

DML triggers that fire in response to INSERT, UPDATE, and DELETE statements, and new DDL

triggers that fire in response to CREATE, ALTER, DROP, and some stored procedures that per-

form DDL-like operations.

Triggers are similar in form to stored procedures, but they are closely tied to your

data and database objects. In the past DML triggers were used to enforce various aspects

of business logic, such as foreign key and other constraints on data and other more com-

plex business logic. Declarative Referential Integrity (DRI) and robust check constraints

in T-SQL have supplanted DML triggers in many areas, but they are still useful in their

own right. In this chapter we will discuss how triggers work, how to use them, and when

they are most appropriate.

DML Triggers
DML triggers are blocks of code that are executed (fired) in response to an INSERT, UPDATE,

or DELETE statement on a table or view. To create a DML trigger, use the CREATE TRIGGER

statement:

CREATE TRIGGER [ schema_name. ] trigger_name

ON { table | view }

[ WITH <dml_trigger_option> [ ,...n ] ]

{ FOR | AFTER | INSTEAD OF }

{ [ INSERT ] [ , ] [ UPDATE ] [ , ] [ DELETE ] }

[ WITH APPEND ]

[ NOT FOR REPLICATION ]

AS { sql_statement [ ,...n ] |

EXTERNAL NAME assembly_name.class_name.method_name } ;

143

C H A P T E R  7

794Xch07final.qxd  3/29/07  4:39 PM  Page 143



The first part of the CREATE TRIGGER statement specifies the trigger_name. The

schema_name can be added in front of the trigger_name to specify the schema in which to

create the trigger. As I mentioned with user-defined functions and stored procedures,

it’s recommended that DML trigger names also be specified with a schema_name. The

trigger_name must be unique to the schema where it is created, and it must follow the

standard rules for T-SQL identifiers.

The ON keyword is used to specify the table or view on which the trigger executes.

Only an INSTEAD OF trigger can be created on a view. The WITH keyword is used to specify

additional dml_trigger_options, which can include the following:

• The ENCRYPTION option obfuscates the trigger code in the database and prevents

unauthorized users from accessing the obfuscated code directly.

• The EXECUTE AS option allows you to specify the context the trigger will execute

under. Valid options are CALLER, SELF, OWNER, and user_name. Each of these options

have the same effect as the user-defined function EXECUTE AS options described in

Chapter 5. The default execution context is CALLER.

■Caution DML triggers have some restrictions on their creation that you should keep in mind. For one,
DML triggers cannot be defined on global or local temporary tables. Also DML triggers cannot be declared
on table variables. Finally, as mentioned previously, only INSTEAD OF triggers can be used on views.

The trigger can be defined as an AFTER (FOR) or INSTEAD OF trigger. The AFTER trigger

fires after a DML statement completes execution. The INSTEAD OF trigger is a replacement

for the normal INSERT, UPDATE, or DELETE action, and it fires before the change occurs on

the underlying table or view. In both cases you will rely on the inserted and deleted vir-

tual tables within the body of your trigger to determine what changes have, or are sup-

posed to, occur on the underlying table or view. We discuss the differences between AFTER

and INSTEAD OF triggers, and the inserted and deleted virtual tables, later in this section.

To finish defining the type of trigger, you specify the action that fires the trigger fol-

lowing the AFTER or INSTEAD OF keywords. You can specify INSERT, DELETE, UPDATE, or a

combination of these actions.

The WITH APPEND keywords tell SQL Server that you are adding additional triggers of

the same type to a table.

■Caution WITH APPEND is a backward-compatibility feature (SQL Server 6.5) and will be removed from
a future version of SQL Server. Do not use this feature; if you are currently using it in your older scripts,
update them to remove this feature.

CHAPTER 7 ■ TRIGGERS144

794Xch07final.qxd  3/29/07  4:39 PM  Page 144



Specifying NOT FOR REPLICATION in the trigger definition informs SQL Server that the

trigger should not be fired when a replication agent modifies the data in the table.

The final option, EXTERNAL NAME, allows you to bind a method in a SQLCLR assembly

to a trigger. The specified assembly_name must exist in SQL Server; the class_name must

exist in the specified assembly; and the method_name must specify a method that takes

no arguments and returns nothing (void in C# or Sub in VB 2005).

The body of the trigger is composed of one or more T-SQL statements after the AS

keyword in the trigger declaration. Just like stored procedures it’s not mandatory to

enclose the body of the trigger with the BEGIN and END keywords. As always, my personal

style is to wrap the body in BEGIN and END to improve readability.

■Note A CREATE TRIGGER or ALTER TRIGGER statement must be the first statement in a batch.

When to Use DML Triggers

Way back in the day, triggers were the best (and sometimes only) way to perform a variety

of tasks such as ensuring referential integrity, validating data before storing it in tables,

auditing changes, and enforcing complex business logic. Newer versions of SQL Server

have added functionality that more closely integrates many of these functions into the core

database engine. In most cases, for instance, you can use SQL Server’s built-in declarative

referential integrity (DRI) to ensure referential integrity and check constraints for simple

validations. Triggers are still an excellent choice when simple auditing tasks or validations

with complex business rules are required.

■Note DRI is not enforced across databases. What this means is that you cannot reference a table in a
different database in a DRI/foreign key constraint. Because they can reference objects such as tables and
views in other databases, triggers are still a good option when this type of referential integrity enforcement
is necessary.

Whenever a trigger fires, it is automatically wrapped in a transaction. This has big

implications for your database. What it means is that whatever your trigger does, it

should do it as quickly and efficiently as possible. The T-SQL statements in your trigger

body can potentially create locks on tables throughout your database, and it is not

unheard of for inefficient triggers to cause blocking problems.

There are some steps you can take to ensure your triggers are efficient. First, you can

check the @@ROWCOUNT function at the start of your trigger. If @@ROWCOUNT is 0, it means that

no rows were inserted, updated, or deleted by the DML statement that fired the trigger.

CHAPTER 7 ■ TRIGGERS 145

794Xch07final.qxd  3/29/07  4:39 PM  Page 145



This means your trigger has no work to do and can exit immediately. You should also

minimize the amount of work done inside the trigger and optimize the operations it does

have to perform. 

We will look at a trigger already defined on the HumanResources.Department table.

The trigger HumanResources.uDepartment simply updates the ModifiedDate column of the

HumanResources.Department table with the current date and time whenever a row is

updated. Listing 7-1 shows this trigger.

Listing 7-1. HumanResources.uDepartment Trigger Code

CREATE TRIGGER [HumanResources].[uDepartment]

ON [HumanResources].[Department]

AFTER UPDATE

NOT FOR REPLICATION

AS

BEGIN

SET NOCOUNT ON;

UPDATE [HumanResources].[Department]

SET [HumanResources].[Department].[ModifiedDate] = GETDATE()

FROM inserted

WHERE inserted.[DepartmentID] = [HumanResources].[Department].[DepartmentID];

END;

The first part of the CREATE TRIGGER statement defines the name of the trigger and

specifies that it will be created on the HumanResources.Department table. The definition

also specifies that the trigger will fire AFTER UPDATE, and the NOT FOR REPLICATION key-

words prevent replication events from firing the trigger:

CREATE TRIGGER [HumanResources].[uDepartment]

ON [HumanResources].[Department]

AFTER UPDATE

NOT FOR REPLICATION

AS

The body of the trigger begins with the SET NOCOUNT ON statement to keep the trigger

from reporting n Rows Affected after the UPDATE statement within the trigger. The UPDATE

statement uses the inserted virtual table and the GETDATE function to set the ModifiedDate

of each affected row to the current date/time:

CHAPTER 7 ■ TRIGGERS146

794Xch07final.qxd  3/29/07  4:39 PM  Page 146



BEGIN

SET NOCOUNT ON;

UPDATE [HumanResources].[Department]

SET [HumanResources].[Department].[ModifiedDate] = GETDATE()

FROM inserted

WHERE inserted.[DepartmentID] = [HumanResources].[Department].[DepartmentID];

END;

■Tip Any SET statement (such as SET ROWCOUNT ON) can be used in a trigger. The statement remains in
effect while the trigger executes, and reverts to its former setting when the trigger completes.

Testing the trigger is as simple as using SELECT and UPDATE. The following sample

changes the name of the Information Services department to Information Technology as

a demonstration. The first step is to determine what’s in the table for this department

with a SELECT statement:

SELECT DepartmentID, Name, GroupName, ModifiedDate

FROM HumanResources.Department

WHERE DepartmentID = 11;

The result looks something like Figure 7-1 (notice the ModifiedDate column):

Next a simple UPDATE changes the department name:

UPDATE HumanResources.Department

SET Name = 'Information Technology'

WHERE DepartmentID = 11;

Finally, running the previous SELECT statement proves the trigger properly updated

the ModifiedDate as shown in Figure 7-2.

CHAPTER 7 ■ TRIGGERS 147

Figure 7-1. Information Services Department at AdventureWorks

794Xch07final.qxd  3/29/07  4:39 PM  Page 147



Triggers can also be used for auditing of tables, as the example in Listing 7-2

demonstrates.

Listing 7-2. Audit Logging Trigger Example

CREATE TABLE HumanResources.ActionLog (

EntryNum INT IDENTITY(1, 1) PRIMARY KEY NOT NULL,

TableName NVARCHAR(200) NOT NULL,

ActionType NVARCHAR(10) NOT NULL,

ActionDML NVARCHAR(500) NOT NULL,

UserID NVARCHAR(50) NOT NULL,

ActionDate DATETIME NOT NULL);

GO

CREATE TRIGGER HumanResources.Trg_DepartmentChangeAudit

ON HumanResources.Department

AFTER INSERT, UPDATE, DELETE

NOT FOR REPLICATION

AS

BEGIN

-- First make sure rows were actually affected

IF (@@ROWCOUNT > 0)

BEGIN

SET NOCOUNT ON;

DECLARE @inserted_count INT;

DECLARE @deleted_count INT;

SELECT @inserted_count = COUNT(*)

FROM inserted;

SELECT @deleted_count = COUNT(*)

FROM deleted;

CHAPTER 7 ■ TRIGGERS148

Figure 7-2. Department name changed to Information Technology

794Xch07final.qxd  3/29/07  4:39 PM  Page 148



-- First scenario: 1 or more rows inserted and

-- no deletes = INSERT statement

IF (@inserted_count > 0) AND (@deleted_count = 0)

BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'INSERT',

N'INSERT INTO HumanResources.Department (Name, GroupName) ' +

N'VALUES (N''' + REPLACE(name, N'''', N'''''') + N''', N''' +

REPLACE(groupname, N'''', N'''''') + N''');',

USER_NAME(),

CURRENT_TIMESTAMP

FROM inserted;

END

-- Second scenario: no inserted rows and

-- 1 or more rows deleted = DELETE statement

ELSE IF (@inserted_count = 0) AND (@deleted_count > 0)

BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'DELETE',

N'DELETE FROM HumanResources.Department ' +

N'WHERE name = N''' + REPLACE(name, N'''', N'''''') + N''';',

USER_NAME(),

CURRENT_TIMESTAMP

FROM deleted;

END

CHAPTER 7 ■ TRIGGERS 149

794Xch07final.qxd  3/29/07  4:39 PM  Page 149



-- Third scenario: 1 or more inserted rows and 

-- 1 or more deleted rows = UPDATE statement

ELSE IF (@inserted_count > 0) AND (@deleted_count > 0)

BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'UPDATE',

N'UPDATE HumanResources.Department ' +

N'name = N''' + REPLACE(name, N'''', N'''''') + N''', ' +

N'groupname = ''' + REPLACE(groupname, N'''', N'''''') + 

N''' ' + N'WHERE DepartmentID = ' +

CAST(DepartmentID AS NVARCHAR(10)) + N';',

USER_NAME(),

CURRENT_TIMESTAMP

FROM inserted;

END

END

END;

GO

The audit logging example begins by creating an audit logging table called

HumanResources.ActionLog. This table will keep audit information for INSERT, UPDATE, and

DELETE statements on the HumanResources.Department table. The information we will audit

includes the table affected (TableName), the type of DML action performed (ActionType),

the ID of the user performing the action (UserID), the date the action was performed

(ActionDate), and finally a recreation of the DML statement that caused the trigger to fire

(ActionDML). Although we are only auditing a single table here, by adding the TableName

column, this example could be extended easily to audit additional tables:

CREATE TABLE HumanResources.ActionLog (

EntryNum INT IDENTITY(1, 1) PRIMARY KEY NOT NULL,

TableName NVARCHAR(200) NOT NULL,

ActionType NVARCHAR(10) NOT NULL,

ActionDML NVARCHAR(500) NOT NULL,

UserID NVARCHAR(50) NOT NULL,

ActionDate DATETIME NOT NULL);

GO

CHAPTER 7 ■ TRIGGERS150

794Xch07final.qxd  3/29/07  4:39 PM  Page 150



The trigger itself is created on the HumanResources.Department table. The definition

begins with the name of the trigger, Trg_DepartmentChangeAudit, to be created in the

HumanResources schema. The trigger will fire after INSERT, UPDATE, and DELETE actions are

performed on the data in the table. Finally, the NOT FOR REPLICATION keywords specify

that replication events will not cause the trigger to fire:

CREATE TRIGGER HumanResources.Trg_DepartmentChangeAudit

ON HumanResources.Department

AFTER INSERT, UPDATE, DELETE

NOT FOR REPLICATION

AS

The first part of the trigger body begins by setting NOCOUNT ON to prevent the trigger

from reporting n Rows Affected after each DML statement in the trigger. The trigger then

checks @@ROWCOUNT to make sure that rows were actually affected. If one or more rows were

affected by the event that fired the trigger, the trigger will determine how many rows were

inserted, deleted, or both by querying the inserted and deleted virtual tables:

BEGIN

-- First make sure rows were actually affected

IF (@@ROWCOUNT > 0)

BEGIN

SET NOCOUNT ON;

DECLARE @inserted_count INT;

DECLARE @deleted_count INT;

SELECT @inserted_count = COUNT(*)

FROM inserted;

SELECT @deleted_count = COUNT(*)

FROM deleted;

The trigger deals with three scenarios. The first is the simple INSERT. If an INSERT event

fires the trigger, the inserted virtual table will have one or more rows in it and the deleted

virtual table will have zero rows in it. In the case of an INSERT event, the trigger inserts the

appropriate INSERT action information in the audit table. This includes a recreation of the

DML statement that inserted the data in the HumanResources.Department table:

-- First scenario: 1 or more rows inserted and

-- no deletes = INSERT statement

IF (@inserted_count > 0) AND (@deleted_count = 0)

CHAPTER 7 ■ TRIGGERS 151

794Xch07final.qxd  3/29/07  4:39 PM  Page 151



BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'INSERT',

N'INSERT INTO HumanResources.Department (Name, GroupName) ' +

N'VALUES (N''' + REPLACE(name, N'''', N'''''') + N''', N''' +

REPLACE(groupname, N'''', N'''''') + N''');',

USER_NAME(),

CURRENT_TIMESTAMP

FROM inserted;

END

The second scenario handles DELETE events. In this scenario, the deleted virtual table

contains one or more rows and the inserted virtual table contains no rows. When a DELETE

event fires the trigger, the DELETE action information is stored in the audit table. As with

the INSERT action information, a recreation of the DELETE statement is also included:

-- Second scenario: no inserted rows and

-- 1 or more rows deleted = DELETE statement

ELSE IF (@inserted_count = 0) AND (@deleted_count > 0)

BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'DELETE',

N'DELETE FROM HumanResources.Department ' +

N'WHERE name = N''' + REPLACE(name, N'''', N'''''') + N''';',

USER_NAME(),

CURRENT_TIMESTAMP

FROM deleted;

END

The third and final scenario handles UPDATE events. When an UPDATE occurs, both the

inserted and deleted virtual tables contain rows. As in the other two scenarios, UPDATE

events insert UPDATE action information with a recreation of the UPDATE statement:

CHAPTER 7 ■ TRIGGERS152

794Xch07final.qxd  3/29/07  4:39 PM  Page 152



-- Third scenario: 1 or more inserted rows and 

-- 1 or more deleted rows = UPDATE statement

ELSE IF (@inserted_count > 0) AND (@deleted_count > 0)

BEGIN

INSERT INTO HumanResources.ActionLog (TableName,

ActionType,

ActionDML,

UserID,

ActionDate)

SELECT N'HumanResources.Department',

N'UPDATE',

N'UPDATE HumanResources.Department ' +

N'name = N''' + REPLACE(name, N'''', N'''''') + N''', ' +

N'groupname = ''' + REPLACE(groupname, N'''', N'''''') + 

N''' ' + N'WHERE DepartmentID = ' +

CAST(DepartmentID AS NVARCHAR(10)) + N';',

USER_NAME(),

CURRENT_TIMESTAMP

FROM inserted;

END

END

END;

GO

CHAPTER 7 ■ TRIGGERS 153

VIRTUAL TABLES IN THE TRIGGER

The inserted and deleted virtual tables are available within the scope of a trigger. They are read-
only tables with the same structure as the table the trigger was created on. You cannot perform
INSERT, UPDATE, or DELETE statements against the inserted and deleted virtual tables—only
SELECT statements are allowed on them. The inserted and deleted virtual tables can be used to
determine the type of event that fired a trigger:

• For an INSERT event, the inserted table contains one or more rows; the deleted table contains
no rows.

• For DELETE events, the deleted table contains one or more rows; the inserted table contains
no rows.

• For UPDATE events, the deleted table contains one or more rows—a snapshot of the data before
the change—and the inserted table contains one or more rows reflecting the updated data.

The inserted and deleted virtual tables are extremely useful in triggers, as demonstrated in the
audit trigger sample in Listing 7-2.

794Xch07final.qxd  3/29/07  4:39 PM  Page 153



You can easily verify the trigger with a few simple DML statements, as shown in

Listing 7-3.

Listing 7-3. Testing the Audit Trigger

INSERT INTO HumanResources.Department (Name, GroupName)

VALUES (N'Customer Service', N'Sales and Marketing');

INSERT INTO HumanResources.Department (Name, GroupName)

VALUES (N'Regulatory Compliance', N'Executive General and Administration');

DELETE FROM HumanResources.Department

WHERE Name = N'Regulatory Compliance';

UPDATE HumanResources.Department

SET Name = N'Customer Relations'

WHERE Name = N'Customer Service';

SELECT EntryNum,

TableName,

ActionType,

UserId,

ActionDate,

ActionDML

FROM HumanResources.ActionLog;

The results returned show that all events were logged in the HumanResources.ActionLog

table:

CHAPTER 7 ■ TRIGGERS154

EntryNum    TableName   ActionType UserId  ActionDate    ActionDML

----------- ----------- ---------- ------- ------------- --------------------------

1 HumanRes... INSERT     dbo     2006-08-19... INSERT INTO HumanResour...

2 HumanRes... INSERT     dbo     2006-08-19... INSERT INTO HumanResour...

3 HumanRes... DELETE     dbo     2006-08-19... DELETE FROM HumanResour...

4 HumanRes... UPDATE     dbo     2006-08-19... UPDATE HumanResources.D...

5 HumanRes... UPDATE     dbo     2006-08-19... UPDATE HumanResources.D...

(5 row(s) affected)

794Xch07final.qxd  3/29/07  4:39 PM  Page 154



Nested Triggers

In the sample trigger, you might have noticed that a single UPDATE event appears to be

audited twice. This happened because of the HumanResources.uDepartment trigger that was

already on the HumanResources.Department table. This trigger performs an UPDATE on the

table, which in turn fires the HumanResources.Trg_DepartmentChangeAudit trigger. SQL

Server supports triggers firing other triggers via the concept of nested triggers. Triggers

can be nested up to 32 levels deep, although if you find your triggers nested several levels

deep it will affect performance and you might want to reconsider your trigger design.

Triggers can also be called recursively. There are two types of recursion:

• Direct recursion is when a trigger performs an action that causes it to recursively

fire itself.

• Indirect recursion is when a trigger fires another trigger (which can fire another

trigger, etc.), which eventually fires the first trigger.

CHAPTER 7 ■ TRIGGERS 155

NESTED TRIGGER TIPS

Nested triggers are triggers that are fired by the action of other triggers. In the sample code, the
HumanResources.uDepartment trigger updates the HumanResources.Department table. This
update by the trigger causes the HumanResources.Trg_DepartmentChangeAudit trigger to fire.
Triggers can be nested up to 32 levels deep, the same as the limitation on nested stored procedures.
Keep in mind, however, that nested triggers can affect performance. Very rarely will you want (or need)
to nest triggers more than one or two levels deep.

Nested triggers can also fire across tables. For instance, if Table A and Table B both have triggers,
and the trigger on Table A updates Table B, it can fire the trigger on Table B. Again you are limited to
a maximum of 32 levels of nesting.

SQL Server 2005 trigger nesting is controlled by the nested triggers configuration option. By
default this option is set to 1, meaning nested triggers are enabled. To disable nested triggers set this
option to 0 with the sp_configure system stored procedure, like the following:

EXEC sp_configure 'nested triggers', 0;

RECONFIGURE;

GO

This option disables nesting of AFTER triggers only. INSTEAD OF triggers can be nested regard-
less of this setting.

794Xch07final.qxd  3/29/07  4:39 PM  Page 155



Direct and indirect recursion of triggers applies only to triggers of the same type.

As an example, an INSTEAD OF trigger call is considered direct recursion even if one or

more AFTER triggers are called between the first and second call to the same INSTEAD OF

trigger. Indirect recursion occurs when a trigger of the same type is called in between

firings of the same trigger.

The ALTER DATABASE database_name SET RECURSIVE_TRIGGERS OFF statement turns

off direct recursion of AFTER triggers. Setting the nested triggers option to 0 with

sp_configure turns off indirect AFTER trigger recursion.

The UPDATE and COLUMNS_UPDATED Functions

Triggers use two system functions, UPDATE and COLUMNS_UPDATED, to tell you which columns

are affected by the INSERT or UPDATE statement that fires the trigger in the first place. UPDATE

takes the name of a column as a parameter and returns TRUE if the column is updated or

inserted, or FALSE otherwise. COLUMNS_UPDATED returns a bit pattern indicating which col-

umns are affected by the INSERT or UPDATE.

The sample trigger in Listing 7-4 demonstrates the use of the UPDATE function to deter-

mine if either of two particular columns are affected by an INSERT or UPDATE statement.

Listing 7-4. Trigger to Enforce Standard Sizes

CREATE TRIGGER Production.Trg_EnforceStandardSizes

ON Production.Product

AFTER INSERT, UPDATE

NOT FOR REPLICATION

AS

BEGIN

-- Make sure at least one row was affected and the Size

-- column was changed

IF (@@ROWCOUNT > 0) AND (UPDATE(SizeUnitMeasureCode) OR UPDATE(Size))

BEGIN

SET NOCOUNT ON;

-- Only accept valid UOM codes

IF EXISTS(SELECT SizeUnitMeasureCode

FROM inserted

WHERE SizeUnitMeasureCode

NOT IN (N'M', N'DM', N'CM', N'MM', N'IN'))

BEGIN

RAISERROR ('Invalid Size Unit Measure Code.', 14, 127);

ROLLBACK TRANSACTION;

END

CHAPTER 7 ■ TRIGGERS156

794Xch07final.qxd  3/29/07  4:39 PM  Page 156



ELSE

BEGIN

UPDATE Production.Product

SET SizeUnitMeasureCode = N'CM',

Size = CAST(CAST(CASE i.SizeUnitMeasureCode

WHEN N'M' THEN CAST(i.Size AS FLOAT) * 100.0

WHEN N'DM' THEN CAST(i.Size AS FLOAT) * 10.0

WHEN N'CM' THEN CAST(i.Size AS FLOAT)

WHEN N'MM' THEN CAST(i.Size AS FLOAT) * 0.10

WHEN N'IN' THEN CAST(i.Size AS FLOAT) * 2.54

END

AS INTEGER) AS NCHAR(5))

FROM inserted i

WHERE Production.Product.ProductID = i.ProductID;

END

END

END;

GO

This trigger enforces the simple business logic of enforcing standard size codes on

the Production.Product table. The trigger restricts inserted and updated units of measure

to five standard units: M = meters, DM = decimeters, CM = centimeters, MM = millimeters, and

IN = inches. No matter which unit of measure is used, the size is automatically converted

to centimeters by the trigger.

The first part of the trigger definition gives the trigger its name, 

Production.Trg_EnforceStandardSizes, and creates it on the Production.Product table. It is

specified as an AFTER INSERT, UPDATE trigger, and is declared as NOT FOR REPLICATION:

CREATE TRIGGER Production.Trg_EnforceStandardSizes

ON Production.Product

AFTER INSERT, UPDATE

NOT FOR REPLICATION

AS

The code in the body of the trigger checks @@ROWCOUNT to make sure at least one row

is affected. It also uses the UPDATE function to check that at least one of either the

SizeUnitMeasureCode or Size columns is updated. If so, the trigger sets NOCOUNT ON to

prevent the n Rows Affected messages from being generated. The IF EXISTS statement

checks to make sure that a valid unit of measure code is used. If not, the trigger raises

a custom error and rolls back the transaction:

CHAPTER 7 ■ TRIGGERS 157

794Xch07final.qxd  3/29/07  4:39 PM  Page 157



BEGIN

-- Make sure at least one row was affected and the Size

-- column was changed

IF (@@ROWCOUNT > 0) AND (UPDATE(SizeUnitMeasureCode) OR UPDATE(Size))

BEGIN

SET NOCOUNT ON;

-- Only accept valid UOM codes

IF EXISTS(SELECT SizeUnitMeasureCode

FROM inserted

WHERE SizeUnitMeasureCode

NOT IN (N'M', N'DM', N'CM', N'MM', N'IN'))

BEGIN

RAISERROR ('Invalid Size Unit Measure Code.', 14, 127);

ROLLBACK TRANSACTION;

END

■Tip Remember, every trigger is part of a transaction. Issuing a ROLLBACK TRANSACTION inside a trigger
rolls back the transaction and cancels the entire batch that the trigger is fired from. In addition, a ROLLBACK
TRANSACTION prevents further triggers from being fired by the current trigger.

Finally, if all checks are passed, the SizeUnitMeasureCode is set to centimeters (CM) and

the Size is converted to centimeters for each inserted or updated row:

ELSE

BEGIN

UPDATE Production.Product

SET SizeUnitMeasureCode = N'CM',

Size = CAST(CAST(CASE i.SizeUnitMeasureCode

WHEN N'M' THEN CAST(i.Size AS FLOAT) * 100.0

WHEN N'DM' THEN CAST(i.Size AS FLOAT) * 10.0

WHEN N'CM' THEN CAST(i.Size AS FLOAT)

WHEN N'MM' THEN CAST(i.Size AS FLOAT) * 0.10

WHEN N'IN' THEN CAST(i.Size AS FLOAT) * 2.54

END

AS INTEGER) AS NCHAR(5))

FROM inserted i

WHERE Production.Product.ProductID = i.ProductID;

END

END

END;

GO

CHAPTER 7 ■ TRIGGERS158

794Xch07final.qxd  3/29/07  4:39 PM  Page 158



This trigger enforces the simple business logic of enforcing standard size codes on

the Production.Product table. The trigger restricts inserted and updated units of measure

to five standard units: M = meters, DM = decimeters, CM = centimeters, MM = millimeters, and

IN = inches. No matter which unit of measure is used, the size is automatically converted

to centimeters by the trigger.

The first part of the trigger definition gives the trigger its name, 

Production.Trg_EnforceStandardSizes, and creates it on the Production.Product table. It is

specified as an AFTER INSERT, UPDATE trigger, and is declared as NOT FOR REPLICATION:

CREATE TRIGGER Production.Trg_EnforceStandardSizes

ON Production.Product

AFTER INSERT, UPDATE

NOT FOR REPLICATION

AS

The code in the body of the trigger checks @@ROWCOUNT to make sure at least one row

is affected. It also uses the UPDATE function to check that at least one of either the

SizeUnitMeasureCode or Size columns is updated. If so, the trigger sets NOCOUNT ON to

prevent the n Rows Affected messages from being generated. The IF EXISTS statement

checks to make sure that a valid unit of measure code is used. If not, the trigger raises

a custom error and rolls back the transaction:

BEGIN

-- Make sure at least one row was affected and the Size

-- column was changed

IF (@@ROWCOUNT > 0) AND (UPDATE(SizeUnitMeasureCode) OR UPDATE(Size))

BEGIN

SET NOCOUNT ON;

-- Only accept valid UOM codes

IF EXISTS(SELECT SizeUnitMeasureCode

FROM inserted

WHERE SizeUnitMeasureCode

NOT IN (N'M', N'DM', N'CM', N'MM', N'IN'))

BEGIN

RAISERROR ('Invalid Size Unit Measure Code.', 14, 127);

ROLLBACK TRANSACTION;

END

■Tip Remember, every trigger is part of a transaction. Issuing a ROLLBACK TRANSACTION inside a trigger
rolls back the transaction and cancels the entire batch that the trigger is fired from. In addition, a ROLLBACK
TRANSACTION prevents further triggers from being fired by the current trigger.

CHAPTER 7 ■ TRIGGERS 159

794Xch07final.qxd  3/29/07  4:39 PM  Page 159



Finally, if all checks are passed, the SizeUnitMeasureCode is set to centimeters (CM) and

the Size is converted to centimeters for each inserted or updated row:

ELSE

BEGIN

UPDATE Production.Product

SET SizeUnitMeasureCode = N'CM',

Size = CAST(CAST(CASE i.SizeUnitMeasureCode

WHEN N'M' THEN CAST(i.Size AS FLOAT) * 100.0

WHEN N'DM' THEN CAST(i.Size AS FLOAT) * 10.0

WHEN N'CM' THEN CAST(i.Size AS FLOAT)

WHEN N'MM' THEN CAST(i.Size AS FLOAT) * 0.10

WHEN N'IN' THEN CAST(i.Size AS FLOAT) * 2.54

END

AS INTEGER) AS NCHAR(5))

FROM inserted i

WHERE Production.Product.ProductID = i.ProductID;

END

END

END;

GO

To test the trigger, you can insert a row into the Production.Product table. Listing 7-5

adds a new Gold-Plated King Roadster bike to the Production.Product table. The size is

entered as 18.9 inches, which is converted to centimeters by the trigger.

Listing 7-5. Testing the Trigger by Adding a New Product

INSERT INTO Production.Product(Name,

ProductNumber,

Size,

SizeUnitMeasureCode,

SafetyStockLevel,

ReorderPoint,

StandardCost,

ListPrice,

DaysToManufacture,

SellStartDate)

CHAPTER 7 ■ TRIGGERS160

794Xch07final.qxd  3/29/07  4:39 PM  Page 160



VALUES ('King Roadster-1000 Gold Plated, 48',

N'BK-K20Z-48',

N'18.9',

N'IN',

1000,

750,

1412.50,

2639.99,

2,

N'2006-08-19');

SELECT Name,

ProductNumber,

Size,

SizeUnitMeasureCode

FROM Production.Product

WHERE ProductNumber = N'BK-K20Z-48';

As you can see in the results, the trigger converts the size to centimeters:

Name                                ProductNumber   Size  SizeUnitMeasureCode

----------------------------------- --------------- ----- -------------------

King Roadster-1000 Gold Plated, 48  BK-K20Z-48      48    CM

(1 row(s) affected)

While the UPDATE function accepts a column name and returns TRUE if the column is

affected, UPDATED_COLUMNS accepts no parameters and returns a varbinary with a single bit

representing each column. You use the logical AND operator (&) and a bit mask to test

which columns are affected. The bits are set from left to right, in the same ordinal posi-

tions as the columns. To create your bit mask, you must use 20 (= 1) to represent the first

column, 21 (= 2) to represent the second column, and so on. To test the MakeFlag and

FinishedGoodsFlag of the Production.Product table (columns four and five, respectively),

you would use a bit mask of 24 (24 = 23 + 24) in an IF statement of this form:

IF (UPDATED_COLUMNS() & 24 = 24)

CHAPTER 7 ■ TRIGGERS 161

794Xch07final.qxd  3/29/07  4:39 PM  Page 161



Because UPDATED_COLUMNS returns a varbinary result, the column indicator bits can

be spread out over several bytes. To test columns beyond the first eight, like the Size and

SizeUnitMeasureCode columns in the example code (columns 11 and 12), you can use the

SUBSTRING function like this:

IF (SUBSTRING(UPDATED_COLUMNS(), 2, 1) & 12 = 12)

The UPDATED_COLUMNS function will not return correct results if the ordinal positions

of the table are changed. If the table is dropped and recreated with columns in a different

order, or if new columns are added between existing columns, you will need to change

your triggers that use UPDATED_COLUMNS to reflect the changes.

■Tip The UPDATED_COLUMNS function’s reliance on the ordinal positions of columns can cause problems
if your table structure changes in the future. Avoid using UPDATED_COLUMNS and use the UPDATE function
in your triggers instead.

Triggers and Identity Columns

There are several ways to retrieve the values inserted into identity columns from within

triggers. One recommended method is to use the SCOPE_IDENTITY function to retrieve the

last identity value generated in any table within the current session and scope. Another

method is to retrieve the values inserted into the identity column from the inserted vir-

tual table. Finally, the OUTPUT clause can be used within a trigger to retrieve the identity

value at INSERT time.

■Caution The other methods of retrieving identity column values include the @@IDENTITY function and
IDENT_CURRENT. @@IDENTITY returns the last inserted identity value in any table during the current ses-
sion. It is not limited to a particular table and can be the source of hard-to-locate errors if used within
a trigger. IDENT_CURRENT is not limited to scope or session; it is limited to a particular table. Use care
with these functions.

Altering, Dropping, and Disabling Triggers

The ALTER TRIGGER statement allows you to change the definition of a trigger. The syn-

tax is similar to that of the CREATE TRIGGER statement, except that the ALTER keyword is

used in place of CREATE. The trigger specified in the ALTER TRIGGER statement must

already exist.

CHAPTER 7 ■ TRIGGERS162

794Xch07final.qxd  3/29/07  4:39 PM  Page 162



The DROP TRIGGER syntax allows you to remove a previously created trigger. The syntax

for DROP TRIGGER is the following:

DROP TRIGGER schema.trigger_name [ , ...n ];

DROP TRIGGER permanently removes the specified trigger from your database. If you

just want to disable a DML trigger without deleting it permanently, use the DISABLE

TRIGGER statement:

DISABLE TRIGGER { [ schema. ] trigger_name [ , ... n ] | ALL }

ON { table | view } ;

You can specify triggers by name in the DISABLE TRIGGER statement, or specify the

keyword ALL to disable all triggers on the specified table or view. The trigger must exist

on the specified table or view. To enable a trigger, use the ENABLE TRIGGER statement:

ENABLE TRIGGER { [ schema. ] trigger_name [ , ... n ] | ALL }

ON { table | view } ;

CHAPTER 7 ■ TRIGGERS 163

MORE TRIGGER CONSIDERATIONS

There are many considerations and options to take into account when designing and creating triggers.
These include the following:

• Constraints on tables are checked before an AFTER trigger is fired. If a constraint violation occurs
the trigger will not be fired. On very rare occasions you might wish to disable a constraint until
after a trigger has finished. You can use the ALTER TABLE statement to disable and reenable
constraints.

• An AFTER trigger can only be specified on a table. An INSTEAD OF trigger can be specified on
a table or view.

• When cascaded DRI DELETEs occur, any triggers are fired in reverse order. For instance if
deleting a row from Table A causes DRI to automatically delete a row (or rows) from Table B,
the trigger on Table B will fire first, followed by the trigger on Table A.

• INSTEAD OF DELETE and INSTEAD OF UPDATE triggers cannot be defined on tables with 
a foreign key delete or update cascade action specified.

• When you create an INSTEAD OF trigger, the trigger must perform the action it is replacing.
For instance, if you create an INSTEAD OF INSERT trigger it must perform the actual INSERT
that updates the table.

794Xch07final.qxd  3/29/07  4:39 PM  Page 163



CHAPTER 7 ■ TRIGGERS164

• Unlike older versions of SQL Server, SQL 2005 allows you to select TEXT, NTEXT, and IMAGE
column values from the inserted and deleted virtual tables. If compatibility is set to 70 or
lower, you cannot access TEXT, NTEXT, or IMAGE columns in the inserted or deleted tables.
If the compatibility is 80 or higher you can update columns of these data types in an INSTEAD OF
trigger. Fortunately, these data types are deprecated and should be avoided in favor of the new
VARCHAR(max), NVARCHAR(max), and VARBINARY(max) data types.

• The TRUNCATE TABLE statement is useful for quickly removing all rows from a table; however,
it does not fire DML DELETE triggers on a table. Similarly, the deprecated WRITETEXT and
UPDATETEXT statements do not fire triggers.

• Triggers can return result sets in a fashion similar to stored procedures. This functionality is
deprecated and will be removed in a future version of SQL Server, however. Plan to change any
triggers that return result sets and don’t design new triggers to return result sets. You can set the
disallow results from triggers option to 0 to prevent triggers from returning result sets.
In order to set this option, you must set the show advanced options option to 1:

EXEC sp_configure 'show advanced options', 1;

RECONFIGURE;

EXEC sp_configure 'disallow results from triggers', 0;

RECONFIGURE;

EXEC sp_configure 'show advanced options', 0;

RECONFIGURE

GO

• The following statements are not allowed in the body of a DML trigger: ALTER DATABASE,
CREATE DATABASE, DROP DATABASE, LOAD DATABASE, LOAD LOG, RECONFIGURE, RESTORE
DATABASE, and RESTORE LOG. Additional restrictions are introduced on T-SQL statements
against the table or view that fired the trigger: ALTER/CREATE/DROP INDEX, DROP TABLE,
ALTER PARTITION FUNCTION, and DBCC DBREINDEX. ALTER TABLE cannot be used to add,
modify, or drop columns, add or drop PRIMARY KEY or UNIQUE constraints, or switch partitions
on the table or view that fired the trigger.

• Creation of a DML trigger requires ALTER permission on the table or view on which it is being
created.

Additionally you can set the first and last AFTER triggers that fire on a table with the
sp_settriggerorder system stored procedure. The order of firing for any triggers between the
first and last triggers is always unspecified. The format of sp_settriggerorder for DML triggers
is the following:

794Xch07final.qxd  3/29/07  4:39 PM  Page 164



DDL Triggers
Prior to SQL Server 2005, T-SQL programmers had only one type of trigger to work with:

DML triggers. SQL Server 2005 adds additional trigger functionality in the form of DDL

triggers that fire when DDL events occur within a database or server. In this section we

will discuss DDL triggers and the events that fire them.

The format of the CREATE TRIGGER statement for DDL triggers is only slightly different

from the DML trigger syntax:

CREATE TRIGGER trigger_name

ON { ALL SERVER | DATABASE }

[ WITH [ ENCRYPTION ] [ [ , ] EXECUTE AS context ] ]

{ FOR | AFTER } { event_type | event_group } [ , ... n ]

AS { sql_statement [ ; ] [ , ... n ] } ;

The CREATE TRIGGER statement for DDL triggers begins by specifying the trigger_name.

The trigger_name must follow the specifications for T-SQL identifiers. DDL triggers are

specified with ALL SERVER or DATABASE scope. DATABASE scope causes the DDL trigger to fire

if the specified event_type or event_group occurs within the current database. ALL SERVER

scope causes the DDL trigger to fire if the event_type or event_group occurs anywhere on

the current server.

The optional WITH keyword can specify either ENCRYPTION or the EXECUTE AS clause, or

any combination of these.

The ENCRYPTION keyword obfuscates the text of the CREATE TRIGGER statement, just like

with CREATE PROCEDURE or CREATE FUNCTION.

The EXECUTE AS clause specifies the security context the trigger will run under. For all

DDL triggers the context can be CALLER to specify the context of the calling module or SELF

to specify the context of the person creating or altering the trigger. For DDL triggers with

CHAPTER 7 ■ TRIGGERS 165

sp_settriggerorder [ @triggername = ] '[ schema. ] trigger_name',

[ @order = ] [ 'First' | 'Last' | 'None' ],

[ @stmt_type = ] 'statement_type'

[ , @namespace = NULL]

The schema and trigger_name specify the trigger you want to set the order for. The @order
parameter can be set to First or Last if you want the trigger to fire first or last, respectively. It should
be None if you don’t want to specify the order of firing for this trigger. The first and last triggers must
have different names, and the statement_type is used to specify the type of statement for which this
trigger fires first or last. Statement_type can be INSERT, DELETE, or UPDATE for DML triggers. The
@namespace parameter is optional, and should be set to NULL if used, for a DML trigger.

794Xch07final.qxd  3/29/07  4:39 PM  Page 165



ALL SERVER scope only you can specify login_name to indicate that the trigger will run

under the context of a specific SQL Server login. For DDL triggers with DATABASE scope

only you can specify the context of a particular user by using user_name.

■Note If using EXECUTE AS user_name on a DDL trigger with DATABASE scope, user_name must exist
in the current database and cannot be a group, role, built-in account, certificate, or key. If using EXECUTE AS
login_name on a DDL trigger with ALL SERVER scope, similar restrictions apply.

DDL triggers can only be specified as FOR or AFTER (there’s no INSTEAD OF option). The

event_types that can fire a DDL trigger are generally of the form CREATE, ALTER, DROP, GRANT,

DENY, REVOKE, and UPDATE STATISTICS. Some system stored procedures that perform DDL

functions also fire DDL triggers.

■Caution Not all system stored procedures that perform DDL functions fire DDL triggers. If you are unsure
whether a system stored procedure that you need to execute will fire a DDL trigger, you should test your trig-
ger’s response to the system stored procedure in question. Also, DDL triggers do not fire in response to DDL
events on temporary tables and temporary stored procedures.

DDL triggers are useful when you want to prevent changes to your database schema,

perform actions in response to a change to the database schema, or audit changes to the

database schema. Which DDL statements can fire a DDL trigger depends on the scope of

the trigger. Table 7-1 is a list of the event_types for DDL triggers with DATABASE scope:

Table 7-1. Database Scoped DDL Trigger Event Types

• ALTER_APPLICATION_ROLE • ALTER_ASSEMBLY

• ALTER_AUTHORIZATION_DATABASE • ALTER_CERTIFICATE

• ALTER_FUNCTION • ALTER_INDEX

• ALTER_MESSAGE_TYPE • ALTER_PARTITION_FUNCTION

• ALTER_PARTITION_SCHEME • ALTER_PROCEDURE

• ALTER_QUEUE • ALTER_REMOTE_SERVICE_BINDING

• ALTER_ROLE • ALTER_ROUTE

• ALTER_SCHEMA • ALTER_SERVICE

• ALTER_TABLE • ALTER_TRIGGER

• ALTER_USER • ALTER_VIEW

CHAPTER 7 ■ TRIGGERS166

794Xch07final.qxd  3/29/07  4:39 PM  Page 166



• ALTER_XML_SCHEMA_COLLECTION • CREATE_APPLICATION_ROLE

• CREATE_ASSEMBLY • CREATE_CERTIFICATE

• CREATE_CONTRACT • CREATE_EVENT_NOTIFICATION

• CREATE_FUNCTION • CREATE_INDEX

• CREATE_MESSAGE_TYPE • CREATE_PARTITION_FUNCTION

• CREATE_PARTITION_SCHEME • CREATE_PROCEDURE

• CREATE_QUEUE • CREATE_REMOTE_SERVICE_BINDING

• CREATE_ROLE • CREATE_ROUTE

• CREATE_SCHEMA • CREATE_SERVICE

• CREATE_STATISTICS • CREATE_SYNONYM

• CREATE_TABLE • CREATE_TRIGGER

• CREATE_TYPE • CREATE_USER

• CREATE_VIEW • CREATE_XML_SCHEMA_COLLECTION

• DENY_DATABASE • DROP_APPLICATION_ROLE

• DROP_ASSEMBLY • DROP_CERTIFICATE

• DROP_CONTRACT • DROP_EVENT_NOTIFICATION

• DROP_FUNCTION • DROP_INDEX

• DROP_MESSAGE_TYPE • DROP_PARTITION_FUNCTION

• DROP_PARTITION_SCHEME • DROP_PROCEDURE

• DROP_QUEUE • DROP_REMOTE_SERVICE_BINDING

• DROP_ROLE • DROP_ROUTE

• DROP_SCHEMA • DROP_SERVICE

• DROP_STATISTICS • DROP_SYNONYM

• DROP_TABLE • DROP_TRIGGER

• DROP_TYPE • DROP_USER

• DROP_VIEW • DROP_XML_SCHEMA_COLLECTION

• GRANT_DATABASE • REVOKE_DATABASE

• UPDATE_STATISTICS

Table 7-2 shows the event_groups for DDL triggers with DATABASE scope.

CHAPTER 7 ■ TRIGGERS 167

794Xch07final.qxd  3/29/07  4:39 PM  Page 167



CHAPTER 7 ■ TRIGGERS168

Table 7-2. Database Scoped DDL Trigger Event Groups

DDL_DATABASE_LEVEL_EVENTS

DDL_TABLE_VIEW_EVENTS

DDL_TABLE_EVENTS (CREATE/ALTER/DROP TABLE)

DDL_VIEW_EVENTS (CREATE/ALTER/DROP VIEW)

DDL_INDEX_EVENTS (CREATE/ALTER/DROP INDEX, CREATE XML INDEX)

DDL_STATISTICS_EVENTS (CREATE/UPDATE/DROP STATISTICS)

DDL_SYNONYM_EVENTS (CREATE SYNONYM, DROP SYNONYM)

DDL_FUNCTION_EVENTS (CREATE/ALTER/DROP FUNCTION)

DDL_PROCEDURE_EVENTS (CREATE/ALTER/DROP PROCEDURE)

DDL_TRIGGER_EVENTS (CREATE/ALTER/DROP TRIGGER)

DDL_EVENT_NOTIFICATION_EVENTS (CREATE/DROP EVENT NOTIFICATION)

DDL_ASSEMBLY_EVENTS (CREATE/ALTER/DROP ASSEMBLY)

DDL_TYPE_EVENTS (CREATE/DROP TYPE)

DDL_DATABASE_SECURITY_EVENTS

DDL_CERTIFICATE_EVENTS (CREATE/ALTER/DROP CERTIFICATE)

DDL_USER_EVENTS (CREATE/ALTER/DROP USER)

DDL_ROLE_EVENTS (CREATE/ALTER/DROP ROLE)

DDL_APPLICATION_ROLE_EVENTS (CREATE/ALTER/DROP APPROLE)

DDL_SCHEMA_EVENTS (CREATE/ALTER/DROP SCHEMA)

DDL_GDR_DATABASE_EVENTS (GRANT/DENY/REVOKE DATABASE)

DDL_AUTHORIZATION_DATABASE_EVENTS (ALTER AUTHORIZATION DATABASE)

DDL_SSB_EVENTS

DDL_MESSAGE_TYPE_EVENTS (CREATE/ALTER/DROP MSGTYPE)

DDL_CONTRACT_EVENTS (CREATE/DROP CONTRACT)

DDL_QUEUE_EVENTS (CREATE/ALTER/DROP QUEUE)

DDL_SERVICE_EVENTS (CREATE/ALTER/DROP SERVICE)

DDL_ROUTE_EVENTS (CREATE/ALTER/DROP ROUTE)

DDL_REMOTE_SERVICE_BINDING_EVENTS (CREATE/ALTER/DROP REMOTE SERVICE BINDING)

DDL_XML_SCHEMA_COLLECTION_EVENTS (CREATE/ALTER/DROP XML SCHEMA COLLECTION)

DDL_PARTITION_EVENTS

DDL_PARTITION_FUNCTION_EVENTS (CREATE/ALTER/DROP PARTITION FUNCTION)

DDL_PARTITION_SCHEME_EVENTS (CREATE/ALTER/DROP PARTITION SCHEME)

794Xch07final.qxd  3/29/07  4:39 PM  Page 168



Table 7-3 is a list of the DDL event_types with ALL SERVER scope:

Table 7-3. Server Scoped DDL Event Types

• ALTER_AUTHORIZATION_SERVER • ALTER_DATABASE

• ALTER_ENDPOINT • ALTER_LOGIN

• CREATE_DATABASE • CREATE_ENDPOINT

• CREATE_LOGIN • DENY_SERVER

• DROP_DATABASE • DROP_ENDPOINT

• DROP_LOGIN • GRANT_SERVER

• REVOKE_SERVER 

Table 7-4 shows the DDL event_groups with ALL SERVER scope.

Table 7-4. Server Scoped DDL Event Groups 

DDL_SERVER_LEVEL_EVENTS (CREATE/ALTER/DROP DATABASE)

DDL_ENDPOINT_EVENTS (CREATE/ALTER/DROP ENDPOINT)

DDL_SERVER_SECURITY_EVENTS

DDL_LOGIN_EVENTS (CREATE/ALTER/DROP LOGIN)

DDL_GDR_SERVER_EVENTS (GRANT/DENY/REVOKE SERVER)

DDL_AUTHORIZATION_SERVER_EVENTS (ALTER AUTHORIZATION SERVER)

If you specify an event_group, any events specified within that group will fire the DDL

trigger. In Tables 7-2 and 7-4, the trigger event groups included in higher-level groups are

indicated by indentation beneath the groups that include them.

As with DML triggers, the DDL trigger body contains sql_statements after the AS key-

word. The sql_statements perform actions in response to the trigger firing. Like the DML

triggers and stored procedures, the trigger body code does not have to be wrapped in the

BEGIN...END keywords (but as with stored procedures, I personally prefer to use them for

readability).

The ALTER TRIGGER, DROP TRIGGER, DISABLE TRIGGER, and ENABLE TRIGGER work for DDL

triggers just as they do for DML triggers. Creation of a DDL trigger with ALL SERVER scope

requires CONTROL SERVER permission on the server. Creating a DDL trigger with DATABASE

scope requires ALTER ANY DATABASE DDL TRIGGER permissions.

CHAPTER 7 ■ TRIGGERS 169

794Xch07final.qxd  3/29/07  4:39 PM  Page 169



Once the DDL trigger fires, you can access metadata about the event that fired the

trigger with the EVENTDATA function. EVENTDATA returns information such as the time, con-

nection, and type of event that fired the trigger. The results are returned as SQL Server xml

data. You can use the xml data type’s value() method to retrieve a specific node from the

result. The sample DDL trigger in Listing 7-6 creates a DDL trigger that fires on CREATE

TABLE in the AdventureWorks database.

Listing 7-6. CREATE TABLE DDL Trigger Example

CREATE TRIGGER Trg_CreateTable

ON DATABASE

FOR CREATE_TABLE

AS

BEGIN

DECLARE @event_data XML;

SELECT @event_data = EVENTDATA();

DECLARE @event_type NVARCHAR(2000);

DECLARE @firing_command NVARCHAR(2000);

SELECT @event_type = @event_data.value(N'(/EVENT_INSTANCE/EventType)[1]',

N'NVARCHAR(2000)');

SELECT @firing_command = @event_data.value(

N'(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', N'NVARCHAR(2000)');

PRINT N'Event type = ' + @event_type;

PRINT N'Command that fired this trigger = ' + @firing_command;

PRINT N'Event data = ' + CAST(@event_data AS NVARCHAR(MAX));

END;

GO

--Test the trigger.

CREATE TABLE NewTable (Column1 INT NOT NULL PRIMARY KEY);

GO

-- Drop the table.

DROP TABLE NewTable;

GO

--Drop the trigger.

DROP TRIGGER Trg_CreateTable

ON DATABASE;

GO

CHAPTER 7 ■ TRIGGERS170

794Xch07final.qxd  3/29/07  4:39 PM  Page 170



The results will look similar to the following (the XML results formatted for easy

readability):

Event type = CREATE_TABLE

Command that fired this trigger = CREATE TABLE NewTable (Column1 

INT NOT NULL PRIMARY KEY);

Event data =

<EVENT_INSTANCE>

<EventType>CREATE_TABLE</EventType>

<PostTime>2006-08-20T15:44:17.267</PostTime>

<SPID>53</SPID>

<ServerName>SQL2005\SQL2K5</ServerName>

<LoginName>SQL2005\Michael</LoginName>

<UserName>dbo</UserName>

<DatabaseName>AdventureWorks</DatabaseName>

<SchemaName>dbo</SchemaName>

<ObjectName>NewTable</ObjectName>

<ObjectType>TABLE</ObjectType>

<TSQLCommand>

<SetOptions ANSI_NULLS="ON"

ANSI_NULL_DEFAULT="ON"

ANSI_PADDING="ON"

QUOTED_IDENTIFIER="ON"

ENCRYPTED="FALSE"/>

<CommandText>

CREATE TABLE NewTable (Column1 INT NOT NULL PRIMARY KEY);&#x0D;

</CommandText>

</TSQLCommand>

</EVENT_INSTANCE>

The trigger definition begins with the name Trg_CreateTable scoped to the DATABASE.

The action that fires this trigger is the CREATE TABLE event:

CREATE TRIGGER Trg_CreateTable

ON DATABASE

FOR CREATE_TABLE

AS

The body of the trigger begins by declaring an xml variable, @event_data. This variable

holds the results of the EVENTDATA function:

CHAPTER 7 ■ TRIGGERS 171

794Xch07final.qxd  3/29/07  4:39 PM  Page 171



BEGIN

DECLARE @event_data XML;

SELECT @event_data = EVENTDATA();

Next, the trigger uses the value() method of the @event_data xml variable to extract

the event type and the command that fired the trigger from @event_data:

DECLARE @event_type NVARCHAR(2000);

DECLARE @firing_command NVARCHAR(2000);

SELECT @event_type = @event_data.value(N'(/EVENT_INSTANCE/EventType)[1]',

N'NVARCHAR(2000)');

SELECT @firing_command = @event_data.value(

N'(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]', N'NVARCHAR(2000)');

Finally, the trigger prints the results to the display:

PRINT N'Event type = ' + @event_type;

PRINT N'Command that fired this trigger = ' + @firing_command;

PRINT N'Event data = ' + CAST(@event_data AS NVARCHAR(MAX));

END;

GO

The CREATE TABLE statement tests the trigger and produces the results. Finally, the

DROP TABLE and DROP TRIGGER statements are used to clean up after the test:

--Test the trigger.

CREATE TABLE NewTable (Column1 INT NOT NULL PRIMARY KEY);

GO

-- Drop the table.

DROP TABLE NewTable;

GO

--Drop the trigger.

DROP TRIGGER Trg_CreateTable

ON DATABASE;

GO

CHAPTER 7 ■ TRIGGERS172

794Xch07final.qxd  3/29/07  4:39 PM  Page 172



Summary
This chapter discussed triggers, including traditional DML triggers and the new

SQL Server 2005 DDL triggers. The following topics were covered:

• DML triggers are tied to tables and views and are fired in response to INSERT,

UPDATE, and DELETE DML statements.

• DDL triggers are scoped to a database or server and are fired in response to

DDL statements, such as CREATE, ALTER, and DROP.

• The UPDATE and UPDATED_COLUMNS system functions can be used in triggers to 

identify columns that were affected by DML statements.

• The EVENTDATA function can be used to retrieve data about the event that fired

a DDL trigger.

• The differences between AFTER and INSTEAD OF triggers were discussed.

• The inserted and deleted virtual tables were described.

• Trigger nesting and recursion were explained.

Much of the functionality that DML triggers were used for in the past, such as enforc-

ing referential integrity, have been supplanted by newer and more efficient T-SQL func-

tionality over the years, like DRI. DML triggers do provide an excellent means of simple

auditing of data and enforcing complex business logic on the server side. DDL triggers

provide new functionality that extends the ability to audit server and database events

and provide protections against accidental or malicious changes to, or destruction of,

database objects.

In the next chapter I will discuss one of the most exciting new aspects of SQL Server

2005 and one of my favorite topics, T-SQL encryption.

CHAPTER 7 ■ TRIGGERS 173

794Xch07final.qxd  3/29/07  4:39 PM  Page 173



794Xch07final.qxd  3/29/07  4:39 PM  Page 174



T-SQL Encryption

One of the new exciting features of SQL Server 2005 is its built-in T-SQL encryption

functionality. Previous versions of SQL Server offered no built-in encryption functionality

for data. In order to encrypt sensitive data, database administrators and developers had

to turn to third-party tools or write their own extended procedures. Even with these tools

in place various aspects of the system, such as encryption key management, left many

databases in a vulnerable state.

SQL Server 2005’s integrated encryption security model takes advantage of the Windows

CryptoAPI to secure your data. With built-in encryption key management and facilities to

handle encryption, decryption, and one-way hashing with built-in T-SQL statements,

SQL 2005 encryption is an excellent choice for securing sensitive data. In this chapter we

will discuss SQL 2005’s built-in encryption, decryption, key management, and one-way

hashing.

The Encryption Hierarchy
SQL Server 2005 offers a layered approach to encryption key management, similar to the

method described in the ANSI X9.17 “Financial Institution Key Management (Wholesale)”

standard (http://www.x9.org). The standard describes three levels of encryption key man-

agement: Master Keys, Key Encrypting Keys, and Data Keys. According to the ANSI stan-

dard, Master Keys are used to encrypt Key Encrypting Keys, and Key Encrypting Keys are

used to encrypt Data Keys. Data Keys are used in turn to encrypt actual data. The advan-

tage to this system is that when a Master Key or Key Encrypting Keys are changed to

maintain security, large amounts of data do not need to be decrypted and reencrypted.

Only the keys encrypted by the Master Key or Key Encrypting Keys need to be decrypted

and reencrypted. When a Data Key is changed, however, all of the data it is securing

needs to be decrypted and reencrypted. The ANSI standard specifies Triple DES as the

means of securing data and keys.

SQL Server 2005 takes this model a step further by allowing several levels of Key

Encrypting Keys between the Master Key and Data Keys. SQL Server also allows for

encryption by certificates, symmetric keys, and asymmetric keys. The SQL 2005 encryp-

tion model is hierarchical as shown in Figure 8-1.
175

C H A P T E R  8

794Xch08final.qxd  3/29/07  4:35 PM  Page 175



At the top of the SQL 2005 encryption hierarchy is the granddaddy of all SQL 2005

encryption keys: the service master key (SMK). This key is automatically generated by

SQL Server the first time it is needed to encrypt another key. The SMK is encrypted

by the operating system with the Windows Data Protection API (DPAPI). There is only

one SMK per SQL Server instance, and it directly or indirectly secures all keys on the

server. The SMK is analogous to the ANSI X9.17 Master Key.

While each SQL Server instance has only a single SMK, each database can have a

database master key (DMK). The DMK is encrypted by the SMK. The DMK is used to

encrypt lower-level keys and certificates. The DMKs and other intermediate layers of

symmetric keys, asymmetric keys, and certificates are roughly analogous to ANSI stan-

dard Key Encrypting Keys.

At the bottom of the SQL Server 2005 key hierarchy are the certificates, symmetric

keys, and asymmetric keys used to encrypt data. These are synonymous with the ANSI

Data Keys.

CHAPTER 8 ■ T-SQL ENCRYPTION176

Figure 8-1. SQL Server 2005 encryption hierarchy

794Xch08final.qxd  3/29/07  4:35 PM  Page 176



Service Master Key
As mentioned, the SMK is automatically generated by SQL Server the first time it is

needed. Because the SMK is generated automatically and managed by SQL Server, there

are only a couple of administrative tools needed to BACKUP and RESTORE it on a server:

BACKUP SERVICE MASTER KEY TO FILE = 'path_to_file'

ENCRYPTION BY PASSWORD = 'password'

RESTORE SERVICE MASTER KEY FROM FILE = 'path_to_file'

DECRYPTION BY PASSWORD = 'password' [ FORCE ]

The BACKUP SERVICE MASTER KEY statement backs up the SMK to the file specified. The

path_to_file can be a local path or a UNC path to a file. Password specifies the password to

use to encrypt or decrypt the SMK. The RESTORE SERVICE MASTER KEY statement can include

the optional keyword FORCE to force the SMK to restore even if there is a data decryption

failure. If you have to use the FORCE keyword you can expect to lose data, so use this option

with care and only as a last resort. Backing up and restoring an SMK requires CONTROL

SERVER permissions.

■Tip After installing SQL Server 2005 you should immediately back up your SMK and store a copy of it in
a secure offsite location. If your SMK becomes corrupted or is otherwise compromised, you could lose all of
your encrypted data if you don’t have it backed up.

In addition, the ALTER SERVICE MASTER KEY statement allows you to change the SMK

for an instance of SQL Server. The format for this statement is the following:

ALTER SERVICE MASTER KEY [ [ FORCE ] REGENERATE ] |

[ WITH OLD_ACCOUNT = 'account_name', OLD_PASSWORD = 'password' ] |

[ WITH NEW_ACCOUNT = 'account_name', NEW_PASSWORD = 'password' ] |

[ { ADD | DROP } ENCRYPTION BY MACHINE KEY ]

The REGENERATE keyword regenerates the SMK. When used with the FORCE keyword, the

SMK is regenerated even at the risk of data loss. The SMK is encrypted by the DPAPI, using

the SQL Server service account credentials, or by the local machine key. If the service

account credentials are changed, you can use the WITH OLD_ACCOUNT or WITH NEW_ACCOUNT

options to enable encryption under the new service account. The WITH NEW_ACCOUNT option

tells SQL Server to impersonate the specified new account user and encrypt the SMK

using that user’s credentials. The WITH OLD_ACCOUNT option tells SQL Server to impersonate

the old account user to decrypt the SMK using that user’s credentials.

CHAPTER 8 ■ T-SQL ENCRYPTION 177

794Xch08final.qxd  3/29/07  4:35 PM  Page 177



The ADD ENCRYPTION BY MACHINE KEY specifies that the SMK is encrypted by the local

machine key. If you DROP ENCRYPTION BY MACHINE KEY, the SMK is encrypted using the SQL

Server service account credentials.

When you regenerate the SMK, all keys that are encrypted by it must be decrypted

and reencrypted. This operation can be resource-intensive and should be scheduled dur-

ing off-peak time periods.

■Caution When restoring or regenerating the SMK, SQL Server will stop if it encounters an error during
the decryption process. Using the FORCE option causes SQL Server to continue despite decryption errors. If
the FORCE option is required, you can expect data loss.

Database Master Key
Each database can have a single DMK, which is used to encrypt certificate and asymmet-

ric key private keys in the current database. The DMK is created with the CREATE MASTER

KEY statement:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password' ;

The CREATE MASTER KEY statement creates the DMK and uses Triple DES to encrypt it

with the supplied password. If the password supplied does not meet Windows’ complexity

requirements, SQL Server will complain with an error message like the following:

CHAPTER 8 ■ T-SQL ENCRYPTION178

Msg 15118, Level 16, State 1, Line 1

Password validation failed. The password does not meet Windows policy requirements

because it is not complex enough.

SQL 2005 automatically encrypts a copy of the DMK with the SMK. This feature

is known as automatic key management. With this feature turned on, SQL Server can

decrypt your DMK when needed. Automatic key management allows SQL Server to

automatically open and decrypt your DMK as necessary. Without automatic key man-

agement you must issue the OPEN MASTER KEY statement and supply the same password

initially used to encrypt it when you need to use it. The potential downside to automatic

key management is that any member of the sysadmin server role can decrypt the DMK.

You can use the ALTER MASTER KEY statement to add or remove automatic key manage-

ment for a DMK or to regenerate it. The format for ALTER MASTER KEY is the following:

794Xch08final.qxd  3/29/07  4:35 PM  Page 178



ALTER MASTER KEY

[ [ FORCE ] REGENERATE WITH ENCRYPTION BY PASSWORD = 'password' ] ] |

[ ADD ENCRYPTION BY [ SERVICE MASTER KEY | PASSWORD = 'password' ] ] |

[ DROP ENCRYPTION BY [ SERVICE MASTER KEY | PASSWORD = 'password' ] ] ;

The specific format to turn off automatic key management is the following:

ALTER MASTER KEY DROP ENCRYPTION BY SERVICE MASTER KEY

To regenerate a DMK, use the REGENERATE option:

ALTER MASTER KEY REGENERATE WITH ENCRYPTION BY PASSWORD = 'password'

When the DMK is regenerated, all the keys it protects are decrypted and reencrypted

with the new DMK. The FORCE keyword is used to force SQL Server to regenerate even if

there are decryption errors. As with the SMK, the FORCE keyword should be used only as

a last resort. You can expect to lose data if you have to use FORCE.

You can also back up and restore a DMK with the BACKUP and RESTORE statements:

BACKUP MASTER KEY TO FILE = 'path_to_file'

ENCRYPTION BY PASSWORD = 'password' ;

RESTORE MASTER KEY FROM FILE = 'path_to_file'

DECRYPTION BY PASSWORD = 'password'

ENCRYPTION BY PASSWORD = 'password'

[ FORCE ] ;

The BACKUP MASTER KEY statement backs up your DMK to the specified file. The

path_to_file can be a local file or network path. The supplied password is used to encrypt

the DMK in the file.

The RESTORE MASTER KEY statement restores a previously backed up DMK from a file.

The DECRYPTION BY PASSWORD is the same password supplied to the BACKUP MASTER KEY

statement. This password is used to decrypt the DMK from the file. The ENCRYPTION BY

PASSWORD specifies the password that should be used to encrypt the DMK on the server.

Again, the FORCE keyword should only be used as a last resort, as it will probably result

in lost data.

The DROP MASTER KEY statement is used to remove a DMK from the database. The for-

mat is simple:

DROP MASTER KEY ;

DROP MASTER KEY will not remove a DMK if it is currently being used to encrypt other

keys in the database. If you want to drop a DMK that is protecting other keys in the data-

base, the protected keys must be altered to remove their encryption by DMK first.

CHAPTER 8 ■ T-SQL ENCRYPTION 179

794Xch08final.qxd  3/29/07  4:35 PM  Page 179



■Tip Always make backups of your DMKs immediately upon creation and store them in a secure location.

If you chose to disable automatic key management with the ALTER MASTER KEY state-

ment, you will need to use the OPEN MASTER KEY and CLOSE MASTER KEY statements every

time you wish to perform encryption and decryption in a database. The formats of these

statements are as follows:

OPEN MASTER KEY DECRYPTION BY PASSWORD = 'password' ;

CLOSE MASTER KEY ;

OPEN MASTER KEY requires you to supply the same password used to encrypt the DMK

when it is created or restored from backup. This password is used to decrypt the DMK, a

required step when you are encrypting and decrypting data. When finished using the

DMK, issue the CLOSE MASTER KEY statement. If you have automatic key management

enabled (it is by default), you do not need to use the OPEN MASTER KEY and CLOSE MASTER

KEY statements; SQL Server will handle that task for you automatically.

■Tip Automatic key management allows SQL Server to automatically decrypt your DMK whenever you
need to encrypt and decrypt data, eliminating the need to use the OPEN MASTER KEY and CLOSE MASTER

KEY statements. It also prevents you from having to reveal the plain-text password encrypting your DMK
inside your code.

Certificates
Certificates are asymmetric encryption keys with additional metadata, such as subject and

expiration date, in the X.509 certificate format. You can think of a certificate as a wrapper

for a private key/public key pair for asymmetric encryption. The CREATE CERTIFICATE state-

ment can be used to either install an existing certificate or create a new certificate on SQL

Server. The format to create a brand new certificate is the following:

CREATE CERTIFICATE certificate_name [ AUTHORIZATION user_name ]

{

[ ENCRYPTION BY PASSWORD = 'password' ]

WITH SUBJECT = 'certificate_subject_name'

[ , START_DATE = 'mm/dd/yyyy' | EXPIRY_DATE = 'mm/dd/yyyy' ]

}

[ ACTIVE FOR BEGIN_DIALOG =  { ON | OFF } ] ;

CHAPTER 8 ■ T-SQL ENCRYPTION180

794Xch08final.qxd  3/29/07  4:35 PM  Page 180



The details for this format include the following:

• Certificate_name is the name of the certificate in the database.

• User_name is the name of the user who owns this certificate.

• ENCRYPTION BY PASSWORD specifies a password to be used to encrypt the certificate’s

private key. If this optional clause is left out, the private key will be encrypted with

the DMK. The password can be up to 128 characters in length.

• WITH SUBJECT specifies a subject, an X.509-defined metadata field (as mentioned

in the first paragraph of this section) of up to 4,096 bytes, for your certificate.

• The optional START_DATE and EXPIRY_DATE identify the certificate start and expira-

tion dates. If omitted, START_DATE is set to the current date and EXPIRY_DATE is set

to one year after the START_DATE.

• ACTIVE FOR BEGIN_DIALOG makes the certificate available to a Service Broker dialog

conversation initiator. The default is ON.

The following is the format to load an existing certificate:

CREATE CERTIFICATE certificate_name [ AUTHORIZATION user_name ]

{

FROM ASSEMBLY assembly_name |

{

[ EXECUTABLE ] FILE = 'path_to_file'

[ WITH PRIVATE KEY

( FILE = 'path_to_private_key'

[ , DECRYPTION BY PASSWORD = 'password' ]

[ , ENCRYPTION BY PASSWORD = 'password' ]

) ]

}

}

[ ACTIVE FOR BEGIN_DIALOG = { ON | OFF } ] ;

The details for this CREATE CERTIFICATE statement are the following:

• Certificate_name and user_name specify the name of the certificate in the database

and the certificate owner, respectively.

• FROM ASSEMBLY specifies that the certificate will be loaded from a signed assembly

that has already been loaded into the database.

CHAPTER 8 ■ T-SQL ENCRYPTION 181

794Xch08final.qxd  3/29/07  4:35 PM  Page 181



• The FILE option specifies the complete path and file name to a Distinguished

Encoding Rules (DER)–encoded X.509 file containing a certificate. If the EXECUTABLE

keyword is used, the file should be a certificate-signed DLL.

• The WITH PRIVATE KEY clause allows you to specify that the certificate’s private key

will be loaded into SQL Server. The FILE keyword of this clause specifies the file

containing the private key. Note that ALTER CERTIFICATE is required to load a pri-

vate key from a .NET assembly. DECRYPTION BY PASSWORD in this clause specifies the

password needed to decrypt the private key from the file. ENCRYPTION BY PASSWORD

indicates that the private key should be encrypted in SQL Server with the speci-

fied password. If ENCRYPTION BY PASSWORD is left out, the private key is encrypted by

the DMK.

• ACTIVE FOR BEGIN_DIALOG makes the certificate available to a Service Broker dialog

conversation initiator. The default is ON.

■Note SQL Server generates private keys that are 1,024 bits in length. If you import a private key from an
external source, it must be a multiple of 64 bits, between 384 and 3,456 bits in length.

After creating a certificate or any other SQL Server encryption securable you should

immediately make a backup and store it in a secure location. The following is the format

of the BACKUP statement:

BACKUP CERTIFICATE certificate_name TO FILE = 'path_to_file'

[ WITH PRIVATE KEY

(

FILE = 'path_to_private_key_file' ,

ENCRYPTION BY PASSWORD = 'password'

[ , DECRYPTION BY PASSWORD = 'password' ]

) ] ;

The certificate_name specifies the name of the certificate in the database, and

path_to_file indicates the file to back the certificate up to. To back up the certificate’s

private key, include the WITH PRIVATE KEY clause. When you use WITH PRIVATE KEY, use the

FILE keyword to specify the file to store the private key in. You must also specify ENCRYPTION

BY PASSWORD to encrypt the private key in the file. DECRYPTION BY PASSWORD is used to indicate

the password used to decrypt the private key in the database. If DECRYPTION BY PASSWORD is

left out, the private key is decrypted with the DMK. Use the CREATE CERTIFICATE statement

to restore a backed-up certificate.

CHAPTER 8 ■ T-SQL ENCRYPTION182

794Xch08final.qxd  3/29/07  4:35 PM  Page 182



■Note There is no RESTORE CERTIFICATE statement in T-SQL. Use the CREATE CERTIFICATE statement
(install an existing certificate form) to restore a backed-up certificate.

T-SQL also has an ALTER CERTIFICATE statement that allows you to make changes to

an existing certificate. The format is the following:

ALTER CERTIFICATE certificate_name

REMOVE PRIVATE KEY |

WITH PRIVATE KEY

(

FILE = 'path_to_private_key'

[ , DECRYPTION BY PASSWORD = 'password' ]

[ , ENCRYPTION BY PASSWORD = 'password' ]

) |

WITH ACTIVE FOR BEGIN_DIALOG = [ ON | OFF ]

The options for ALTER CERTIFICATE include the following:

• The certificate_name is the name of the certificate in the database.

• REMOVE PRIVATE KEY can be used to prevent the private key from being stored in the

database. You can use this option when a private key is not required, such as for

signature verification.

• WITH PRIVATE KEY allows you to store the private key for the certificate in the data-

base. The FILE keyword specifies the path and file that contains the private key.

DECRYPTION BY PASSWORD specifies the password used to decrypt the private key from

the file. ENCRYPTION BY PASSWORD specifies the password used to encrypt the private

key in the database. If left out, the DMK is used to encrypt the private key.

• WITH ACTIVE FOR BEGIN_DIALOG allows you to make the certificate available to a

Service Broker dialog conversation initiator.

■Note In addition to the previous options, the ALTER CERTIFICATE includes the options ATTESTED BY
and REMOVE ATTESTED OPTION. These options are currently undocumented by Microsoft and, in fact,
Microsoft has stated that references to these particular options should not have been included in BOL.

CHAPTER 8 ■ T-SQL ENCRYPTION 183

794Xch08final.qxd  3/29/07  4:35 PM  Page 183



You can use certificates to encrypt and decrypt data directly with the certificate

encryption/decryption functions. The EncryptByCert function encrypts the given

cleartext with the specified certificate:

EncryptByCert ( certificate_id , 'cleartext' )

The EncryptByCert function returns a varbinary up to a maximum of 432 bytes in

length. The length of the result depends on the length of the key. See the following note

for specifics on EncryptByCert limitations. The certificate_id is the integer ID number

of the certificate in the database. This ID number can be retrieved with the Cert_ID func-

tion described later in this section. The cleartext is the string to be encrypted. It can be

a char, varchar, binary, nchar, nvarchar, or varbinary constant, column, or variable.

DecryptByCert decrypts text previously encrypted with EncryptByCert. The following is

the format for DecryptByCert:

DecryptByCert ( certificate_id , ciphertext [ , 'cert_password' ] )

DecryptByCert requires the certificate_id of the certificate used to encrypt the

ciphertext. The ciphertext is the varbinary result of the EncryptByCert function and

cert_password is the password used to encrypt the certificate if one is specified when

it is created. If no password was specified when the certificate was created the DMK

will be used to decrypt it.

CHAPTER 8 ■ T-SQL ENCRYPTION184

THE 421-BYTE LIMIT

The length of the cleartext strings accepted and ciphertext results returned by EncryptByCert
are limited by the length of the certificate’s asymmetric key. The maximum is 421 bytes of cleartext,
which results in a 432-byte ciphertext result. The default for the 1,024-bit key modulus in SQL
Server–generated certificates is 117 bytes of cleartext (a maximum of 58 characters for nchar and
nvarchar) with a 128-byte ciphertext result. The formula for calculating the maximum size of your
cleartext and the size of your encrypted ciphertext result for a certificate is the following:

Max. size of cleartext = (size of encryption key modulus in bits / 8) - 11

Size of ciphertext = (size of encryption key modulus in bits / 8)

794Xch08final.qxd  3/29/07  4:35 PM  Page 184



■Tip Because certificates encrypt and decrypt using asymmetric encryption, they are slower and use
more resources than symmetric encryption functions. Of course, symmetric encryption algorithms have
shorter keys and require a single key to encrypt and decrypt. SQL Server 2005 uses asymmetric keys and
certificates to encrypt symmetric keys, which can be used to encrypt data directly. This is a well-established
design that provides the best of both worlds: the security of asymmetric encryption and the speed of sym-
metric encryption. To maximize speed, you’ll generally want to use symmetric encryption on your data and
save certificates and asymmetric encryption for securing encryption keys.

The Cert_ID function can be used to retrieve the ID number of a certificate by name

at encryption and decryption time. Cert_ID accepts the name of the certificate and returns

the integer ID of the certificate. Use Cert_ID to retrieve the ID numbers of certificates for

use by EncryptByCert and DecryptByCert. The following is the format for Cert_ID:

Cert_ID( 'certificate_name' )

Certificate_name is the name of the certificate as specified when it is created.

Listing 8-1 demonstrates encryption and decryption with a certificate.

Listing 8-1. Sample Encryption and Decryption by Certificate

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'Adventureworks Test Certificate',

EXPIRY_DATE = '10/31/2026';

DECLARE @s NVARCHAR(58);

SELECT @s = N'This is a test string to encrypt';

SELECT @s;

DECLARE @e VARBINARY(128);

SELECT @e = EncryptByCert(Cert_ID('TestCertificate'), @s);

SELECT @e;

DECLARE @d NVARCHAR(58);

SELECT @d = DecryptByCert(Cert_ID('TestCertificate'), @e);

SELECT @d;

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

CHAPTER 8 ■ T-SQL ENCRYPTION 185

794Xch08final.qxd  3/29/07  4:35 PM  Page 185



The sample code first creates a DMK and a test certificate:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'Adventureworks Test Certificate',

EXPIRY_DATE = '10/31/2026';

The next lines assign a test string to an nvarchar variable, encrypt it with the

EncryptByCert function, and then decrypt it again with the DecryptByCert function:

DECLARE @s NVARCHAR(58);

SELECT @s = N'This is a test string to encrypt';

SELECT @s;

DECLARE @e VARBINARY(128);

SELECT @e = EncryptByCert(Cert_ID('TestCertificate'), @s);

SELECT @e;

DECLARE @d NVARCHAR(58);

SELECT @d = DecryptByCert(Cert_ID('TestCertificate'), @e);

SELECT @d;

Finally, a little cleanup, as the sample drops the test certificate and DMK it created:

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

You can also use a certificate to generate a signature for plain text. This allows you

to detect whether your plain text has been tampered with. The format for the SignByCert

function is the following:

SignByCert ( certificate_id, plaintext [ ,'password' ] )

SignByCert accepts a certificate_id and plaintext to sign. The password is the

nvarchar password, up to 128 characters in length, used when the certificate is created.

If no password is specified the DMK is used to decrypt the certificate. Listing 8-2 demon-

strates the SignByCert function.

CHAPTER 8 ■ T-SQL ENCRYPTION186

794Xch08final.qxd  3/29/07  4:35 PM  Page 186



Listing 8-2. The SignByCert Function

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'Adventureworks Test Certificate',

EXPIRY_DATE = '10/31/2026';

DECLARE @speech NVARCHAR(4000);

SELECT @speech = N'Four score and seven years ago, our fathers brought ' +

N'forth on this continent a new nation, conceived in Liberty, ' +

N'and dedicated to the proposition that all men are created ' +

N'equal. ';

SELECT @speech;

SELECT SignByCert(Cert_ID(N'TestCertificate'), @speech);

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

Asymmetric Keys
Asymmetric keys are actually composed of two separate keys: a public key that is publicly

accessible, and a private key that is kept secret. The mathematical relationship between

the public and private keys allows for encryption and decryption without revealing the

private key. T-SQL includes statements for creating, altering, and dropping asymmetric

keys. The CREATE ASYMMETRIC KEY statement has two formats. The first format allows you

to install an existing public/private key pair:

CREATE ASYMMETRIC KEY key_name [ AUTHORIZATION user_name ]

FROM [ EXECUTABLE ] FILE = 'path_to_file' | ASSEMBLY assembly_name

[ ENCRYPTION BY PASSWORD = 'password' ]

When creating an asymmetric key you can specify installation of a key pair from an

external strong-name file using the FILE option (add the EXECUTABLE keyword to specify an

executable assembly). Use the ASSEMBLY keyword to specify installation of a key pair from

an assembly that is installed on the server. The AUTHORIZATION keyword specifies the

owner of the asymmetric key, which cannot be a role or group. If AUTHORIZATION is omit-

ted, the current user is the owner. The second format creates a new asymmetric key:

CHAPTER 8 ■ T-SQL ENCRYPTION 187

794Xch08final.qxd  3/29/07  4:35 PM  Page 187



CREATE ASYMMETRIC KEY key_name [ AUTHORIZATION user_name ]

WITH ALGORITHM = { RSA_512 | RSA_1024 | RSA_2048 }

[ ENCRYPTION BY PASSWORD = 'password' ]

Use the WITH ALGORITHM keywords to tell SQL Server to generate a new key pair for the

specified RSA encryption algorithm. If you include ENCRYPTION BY PASSWORD, SQL Server

will encrypt the asymmetric key private keys in the database with the specified password.

Otherwise the asymmetric key will be encrypted by the DMK.

To alter an existing asymmetric key, use the ALTER ASYMMETRIC KEY statement:

ALTER ASYMMETRIC KEY key_name

REMOVE PRIVATE KEY |

WITH PRIVATE KEY

(

[ ENCRYPTION BY PASSWORD = 'password' ]

[ , DECRYPTION BY PASSWORD = 'old_password' ]

)

Use REMOVE PRIVATE KEY to remove the private key from the asymmetric public/private

key pair. The WITH PRIVATE KEY option changes the method used to protect the private key.

Use the ENCRYPTION BY PASSWORD option alone to change the protection method from DMK

encryption to password encryption. Specify DECRYPTION BY PASSWORD alone to change from

password encryption to DMK encryption. To change the password used to encrypt the pri-

vate key, specify both options.

Use DROP ASYMMETRIC KEY to remove an asymmetric key from the database:

DROP ASYMMETRIC KEY key_name

The EncryptByAsymKey and DecryptByAsymKey functions allow you to encrypt and

decrypt data with an asymmetric key:

EncryptByAsymKey ( asym_key_id, plaintext )

DecryptByAsymKey ( asym_key_id, ciphertext [ , 'password' ] )

Asym_key_id is the asymmetric key ID. Use the AsymKey_ID function to retrieve asym-

metric key IDs by name. Plaintext is the text to encrypt and ciphertext is the encrypted

text to decrypt. Password is the nvarchar password used to encrypt the asymmetric key.

Omit password if the asymmetric key is encrypted with the DMK.

Note that asymmetric key encryption and decryption has limitations similar to the

certificate encryption and decryption functions. The limits on plaintext parameters and

ciphertext results are listed in Table 8-1.

CHAPTER 8 ■ T-SQL ENCRYPTION188

794Xch08final.qxd  3/29/07  4:35 PM  Page 188



Table 8-1. Size Limits of T-SQL Asymmetric Encryption

Algorithm Plaintext Ciphertext Signature

RSA_512 53 bytes 64 bytes 64 bytes

RSA_1024 117 bytes 128 bytes 128 bytes

RSA_2048 245 bytes 256 bytes 256 bytes

The AsymKey_ID function accepts the name of an asymmetric key as a parameter and

returns the integer ID of the asymmetric key. Use this function to retrieve asymmetric key

IDs by name for the encryption and decryption functions. The following is the format for

AsymKey_ID:

AsymKey_ID ( 'asym_key_name' )

Listing 8-3 demonstrates the use of T-SQL asymmetric key encryption and decryp-

tion functions.

Listing 8-3. Asymmetric Key Encryption/Decryption Example

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE ASYMMETRIC KEY TestAsymKey

WITH ALGORITHM = RSA_512

DECLARE @credit_card NVARCHAR(26);

SELECT @credit_card = N'9000 1234 5678 9012';

SELECT @credit_card;

DECLARE @enc_credit_card VARBINARY(64);

SELECT @enc_credit_card = EncryptByAsymKey(AsymKey_ID(N'TestAsymKey'),

@credit_card);

SELECT @enc_credit_card;

DECLARE @dec_credit_card NVARCHAR(26);

SELECT @dec_credit_card = DecryptByAsymKey(AsymKey_ID(N'TestAsymKey'),

@enc_credit_card);

SELECT @dec_credit_card;

DROP ASYMMETRIC KEY TestAsymKey;

DROP MASTER KEY;

CHAPTER 8 ■ T-SQL ENCRYPTION 189

794Xch08final.qxd  3/29/07  4:35 PM  Page 189



This example first creates a DMK and an RSA asymmetric key with a 512-bit private

key modulus:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE ASYMMETRIC KEY TestAsymKey

WITH ALGORITHM = RSA_512

Next, it encrypts a fake credit card number with the EncryptByAsymKey function:

DECLARE @credit_card NVARCHAR(26);

SELECT @credit_card = N'9000 1234 5678 9012';

SELECT @credit_card;

DECLARE @enc_credit_card VARBINARY(64);

SELECT @enc_credit_card = EncryptByAsymKey(AsymKey_ID(N'TestAsymKey'),

@credit_card);

SELECT @enc_credit_card;

It then decrypts the encrypted credit card number using the DecryptByAsymKey

function:

DECLARE @dec_credit_card NVARCHAR(26);

SELECT @dec_credit_card = DecryptByAsymKey(AsymKey_ID(N'TestAsymKey'),

@enc_credit_card);

SELECT @dec_credit_card;

The sample finishes up with a little cleanup:

DROP ASYMMETRIC KEY TestAsymKey;

DROP MASTER KEY;

Like certificates, asymmetric keys offer a function to generate digital signatures for

plain text. The following is the format for the SignByAsymKey function:

SignByAsymKey( asym_key_id, plaintext [ , 'password' ] )

The SignByAsymKey function accepts a string up to 8,000 bytes in length and returns

a varbinary signature for the string. The length of the signature is dependent on the key

modulus (see Table 8-1 for the result lengths). The SignByASymKey function is demon-

strated in Listing 8-4.

CHAPTER 8 ■ T-SQL ENCRYPTION190

794Xch08final.qxd  3/29/07  4:35 PM  Page 190



Listing 8-4. SignByAsymKey Function Sample

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE ASYMMETRIC KEY TestAsymKey

WITH ALGORITHM = RSA_512

DECLARE @quote NVARCHAR(4000);

SELECT @quote = N'Alas, poor Yorick!';

SELECT @quote;

SELECT SignByAsymKey(AsymKey_ID(N'TestAsymKey'), @quote);

DROP ASYMMETRIC KEY TestAsymKey;

DROP MASTER KEY;

Symmetric Keys
Symmetric keys are at the bottom of the encryption hierarchy. In the SQL Server 2005

encryption model, symmetric keys are encrypted by certificates or asymmetric keys and

they can be used in turn to encrypt raw data or other symmetric keys. To create a sym-

metric key use the CREATE SYMMETRIC KEY statement:

CREATE SYMMETRIC KEY key_name [ AUTHORIZATION user_name ]

WITH ALGORITHM =

{

DES | TRIPLE_DES | RC2 | RC4 | RC4_128 | DESX |

AES_128 | AES_192 | AES_256

}

KEY_SOURCE = 'pass_phrase' |

[ IDENTITY_VALUE = 'identity_phrase' ] |

ENCRYPTION BY

{

CERTIFICATE certificate_name |

PASSWORD = 'password' |

SYMMETRIC KEY symmetric_key_name |

ASYMMETRIC KEY asym_key_name

}

CHAPTER 8 ■ T-SQL ENCRYPTION 191

794Xch08final.qxd  3/29/07  4:35 PM  Page 191



The key_name is the name of the symmetric key in the database, and user_name speci-

fies the owner of the symmetric key. You can create temporary symmetric keys by prefixing

the key_name with the number sign (#). A temporary symmetric key exists only during the

current session and is automatically removed when the current session ends. In addition,

it is not accessible to any sessions outside of the session it is created in. When referencing

a temporary symmetric key, the number sign (#) prefix must always be used. The WITH

clause specifies how the symmetric key should be created. The options are the following:

• KEY_SOURCE designates a pass_phrase to be used as key material to derive the sym-

metric key from.

• ALGORITHM specifies the encryption algorithm the symmetric key will be used with.

• IDENTITY_VALUE specifies an identity_phrase that is used to generate a GUID that

can be used to “tag” data encrypted with this key.

• The ENCRYPTION BY clause specifies the method used to encrypt this symmetric key

in the database. You can specify encryption by a certificate, password, asymmetric

key, or another symmetric key.

■Caution Microsoft recommends avoiding the RC4 and RC4_128 encryption algorithms when creating
a symmetric key. Unlike the other encryption algorithms, RC4 and RC4_128 don’t add a random salt value
to the encryption process. Salting the encryption helps remove recognizable patterns from the encrypted
ciphertext. It’s important to remove these patterns, as they can aid cryptanalysts trying to hack encrypted
data. Also note that AES encryption is not supported on Windows 2000 or Windows XP.

In addition to creating a symmetric key, you can alter or drop it using the ALTER

SYMMETRIC KEY and DROP SYMMETRIC KEY statements. The following is the ALTER statement

format:

ALTER SYMMETRIC KEY key_name

ADD ENCRYPTION BY

{

CERTIFICATE certificate_name |

PASSWORD = 'password' |

SYMMETRIC KEY symmetric_key_name |

ASYMMETRIC KEY asym_key_name

} [ , ... n ] |

CHAPTER 8 ■ T-SQL ENCRYPTION192

794Xch08final.qxd  3/29/07  4:35 PM  Page 192



DROP ENCRYPTION BY

{

CERTIFICATE certificate_name |

PASSWORD = 'password' |

SYMMETRIC KEY symmetric_key_name |

ASYMMETRIC KEY asym_key_name

} [ , ... n ]

The ALTER statement allows you to add or remove encryption methods on a symmet-

ric key. This allows you to change the encryption method used for a key. For instance, if

you have a symmetric key encrypted by password but wish to change it to encryption by

certificate, first ADD ENCRYPTION BY CERTIFICATE and then DROP ENCRYPTION BY PASSWORD.

The DROP SYMMETRIC KEY statement allows you to remove a symmetric key from the

database:

DROP SYMMETRIC KEY symmetric_key_name

Once you have created a symmetric key and wish to use it, you must first open it with

the OPEN SYMMETRIC KEY statement. Any keys used to encrypt the symmetric key must be

opened before you open the symmetric key in question. The following is the format for

the OPEN statement:

OPEN SYMMETRIC KEY key_name

DECRYPTION BY

{

CERTIFICATE certificate_name [ WITH PASSWORD = 'password' ] |

ASYMMETRIC KEY asym_key_name [ WITH PASSWORD = 'password' ] |

SYMMETRIC KEY symmetric_key_name |

PASSWORD = 'password'

}

The key_name in the OPEN statement is the name of the symmetric key to open. The

DECRYPTION BY clause specifies the method to use to decrypt the symmetric key for use.

You can specify decryption by certificate, asymmetric key, symmetric key, or password.

If you specify by certificate or asymmetric key, you can specify the password used to

encrypt the certificate or asymmetric key with the WITH PASSWORD clause. If the DMK was

used to encrypt the certificate or asymmetric key, leave off the WITH PASSWORD clause.

When you have finished using a symmetric key, issue the CLOSE SYMMETRIC KEY state-

ment:

CLOSE { SYMMETRIC KEY key_name | ALL SYMMETRIC KEYS }

You can specify a single symmetric key to close by name or use CLOSE ALL SYMMETRIC

KEYS to close all open symmetric keys.

CHAPTER 8 ■ T-SQL ENCRYPTION 193

794Xch08final.qxd  3/29/07  4:35 PM  Page 193



■Note Opening and closing a symmetric key affects only the current session on the server. All open sym-
metric keys available to the current session are automatically closed when the current session ends.

The EncryptByKey and DecryptByKey functions use a symmetric key to encrypt and

decrypt data. The format of EncryptByKey is the following:

EncryptByKey ( key_guid, 'cleartext' [ , add_authenticator, authenticator ] )

In this function, the key_guid is the GUID of the symmetric key. This value can be

retrieved by the key name using the Key_GUID function described next:

Key_GUID ( 'key_name' )

This function accepts one parameter, key_name, which is the name of the key for

which the key_guid is to be retrieved. The key_guid is the MD5 hash value of the

IDENTITY_VALUE option specified when the symmetric key is created. If no IDENTITY_VALUE

is specified at creation time, the key_guid is a GUID that is automatically generated by the

server. Cleartext is the plain text that is to be encrypted by the EncryptByKey function. It

can be a char, varchar, binary, varbinary, nchar, or nvarchar constant, column, or T-SQL

variable. The result is the encrypted data in varbinary format with a maximum length of

8,000 bytes.

You cannot specify an initialization vector (IV) when encrypting data. An IV is auto-

matically generated randomly by SQL Server. The IV is used to further obfuscate the

encrypted result of block ciphers such as AES and DES. The obfuscation provided by an

IV helps further eliminate patterns from encrypted data that cryptanalysts can use in

attempts to hack encrypted data.

■Note The IV is an important aspect of block cipher encryption algorithms like DES and AES. Although
T-SQL does not allow you to specify your own IV, it automatically generates a random IV that helps further
obfuscate the result. This randomly generated IV also means that adding an index to a column in a table
that contains encrypted data is useless.

The add_authenticator parameter allows you to add an authenticator to prevent

wholesale substitution of values. When add_authenticator is set to 1, SQL Server derives

an authentication value from the authenticator parameter passed in. The authenticator

is a varbinary value. To further explain the functionality of this option, consider Table 8-2,

which contains bank account information.

CHAPTER 8 ■ T-SQL ENCRYPTION194

794Xch08final.qxd  3/29/07  4:35 PM  Page 194



Table 8-2. Sample Bank Account Table

Name Account Number Balance

Gates, Bill 9872 ^#eQrT\&0yU8!@-=

Thomas, John 9928 &3!@-+=!Rt}|;2-A

Ellison, Larry 9964 %^~!)*p:x3K9|?>.

In this example, the bank balances are encrypted. However, if hacker extraordinaire

(and customer) John Thomas gains access to this table, he might recognize that both

Bill Gates and Larry Ellison have larger balances in their accounts than he. In this case

he would not even need to decrypt the balances—he would just copy either Larry’s or

Bill’s balance into his account in encrypted form. Adding an authenticator (the Account

Number column could be used in this instance) prevents this type of whole value substi-

tution attack. When data is encrypted with an authenticator, the authenticator is hashed

and applied to the data during encryption. The same authenticator must be supplied to

decrypt the data, or decryption will fail.

When SQL Server encrypts by symmetric key, it adds metadata to the encrypted

result, as well as padding, making the encrypted result larger (sometimes significantly

larger) than the unencrypted plain text. The format for the encrypted result with meta-

data follows this format:

• The first 16 bytes of the encrypted result represent the GUID of the symmetric key

used to encrypt the data.

• The next 4 bytes represent a version number, currently hard-coded as “01000000.”

• The next 8 bytes for DES encryption (16 bytes for AES encryption) represent the

randomly generated initialization vector.

• The next 8 bytes are header information representing the options used to encrypt

the data. If the authenticator option is used, this header information includes a

20-byte SHA1 hash of the authenticator, making the header information 28 bytes

in length.

• The last part of the encrypted data is the actual data and padding itself. For DES

algorithms, the length of this encrypted data will be a multiple of 8 bytes. For 

AES algorithms, the length will be a multiple of 16 bytes.

CHAPTER 8 ■ T-SQL ENCRYPTION 195

794Xch08final.qxd  3/29/07  4:35 PM  Page 195



Use the DecryptByKey function to decrypt data previously encrypted by symmetric key:

DecryptByKey ( ciphertext [ , add_authenticator, authenticator ] )

Because the GUID of the key used to encrypt the data is stored with the encrypted

data, it is not necessary to supply the symmetric key GUID when decrypting data. The

ciphertext is the varbinary encrypted result of the EncryptByKey function. If an authenti-

cator is used with EncryptByKey, the add_authenticator option of DecryptByKey must be set

to 1 and the authenticator value must be the same value used with EncryptByKey.

Listing 8-5 demonstrates the EncryptByKey and DecryptByKey functions.

Listing 8-5. EncryptByKey and DecryptByKey Demonstration

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'AdventureWorks Test Certificate',

EXPIRY_DATE = '10/31/2036';

CHAPTER 8 ■ T-SQL ENCRYPTION196

BLOCK CIPHERS AND PADDING

Block cipher algorithms must pad their result to the size of their blocks. For algorithms that encrypt
data in 8-byte blocks (such as DES and Triple DES) the result will be padded out to an 8-byte boundary.
If you encrypt data that is already a multiple of 8 bytes in length, an additional 8 bytes of padding will
be added. For AES and other algorithms that encrypt in 16-byte blocks, the result will be padded to
a 16-byte boundary. If the length of your plain text is already a multiple of 16 bytes, an additional
16 bytes of padding are added.

The length of the encrypted data is limited to 8,000 bytes. To calculate the length of the cipher
text your plain text will generate on SQL Server, use one of the following two formulas.

For 8-byte block ciphers like the DES family, use the following:

Length of ciphertext = 8 * ( ( Length of plaintext + 8 ) / 8 ) + 36

For 16-byte block ciphers like AES, use the following:

Length of ciphertext = 16 * ( ( Length of plaintext + 16 ) / 16 ) + 44

For either algorithm, add an additional 20 bytes for the SHA1 hash of the authenticator if the
add_authenticator option is used. Note that the length of the encrypted result generated might
change in the future if Microsoft modifies this format.

794Xch08final.qxd  3/29/07  4:35 PM  Page 196



CREATE SYMMETRIC KEY TestSymmetricKey

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY CERTIFICATE TestCertificate;

OPEN SYMMETRIC KEY TestSymmetricKey

DECRYPTION BY CERTIFICATE TestCertificate;

CREATE TABLE #Temp (ContactID INT PRIMARY KEY,

FirstName   NVARCHAR(200),

MiddleName  NVARCHAR(200),

LastName    NVARCHAR(200),

eFirstName  VARBINARY(200),

eMiddleName VARBINARY(200),

eLastName   VARBINARY(200));

INSERT

INTO #Temp (ContactID, eFirstName, eMiddleName, eLastName)

SELECT ContactID,

EncryptByKey(Key_GUID('TestSymmetricKey'), FirstName),

EncryptByKey(Key_GUID('TestSymmetricKey'), MiddleName),

EncryptByKey(Key_GUID('TestSymmetricKey'), LastName)

FROM Person.Contact

WHERE ContactID <= 100;

UPDATE #Temp

SET FirstName = DecryptByKey(eFirstName),

MiddleName = DecryptByKey(eMiddleName),

LastName = DecryptByKey(eLastName);

SELECT ContactID,

FirstName,

MiddleName,

LastName,

eFirstName,

eMiddleName,

eLastName

FROM #Temp;

DROP TABLE #Temp;

CLOSE SYMMETRIC KEY TestSymmetricKey;

CHAPTER 8 ■ T-SQL ENCRYPTION 197

794Xch08final.qxd  3/29/07  4:35 PM  Page 197



DROP SYMMETRIC KEY TestSymmetricKey;

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

The sample begins by creating the necessary DMK, certificate, and TRIPLE_DES algo-

rithm symmetric key. It then creates a temporary table to hold the results of encryption

and decryption:

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'AdventureWorks Test Certificate',

EXPIRY_DATE = '10/31/2036';

CREATE SYMMETRIC KEY TestSymmetricKey

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY CERTIFICATE TestCertificate;

OPEN SYMMETRIC KEY TestSymmetricKey

DECRYPTION BY CERTIFICATE TestCertificate;

CREATE TABLE #Temp (ContactID INT PRIMARY KEY,

FirstName   NVARCHAR(200),

MiddleName  NVARCHAR(200),

LastName    NVARCHAR(200),

eFirstName  VARBINARY(200),

eMiddleName VARBINARY(200),

eLastName   VARBINARY(200));

The next step uses EncryptByKey to encrypt the names of 100 contacts from the

Person.Contact table and store the result in the temporary table:

INSERT

INTO #Temp (ContactID, eFirstName, eMiddleName, eLastName)

SELECT ContactID,

EncryptByKey(Key_GUID('TestSymmetricKey'), FirstName),

EncryptByKey(Key_GUID('TestSymmetricKey'), MiddleName),

EncryptByKey(Key_GUID('TestSymmetricKey'), LastName)

FROM Person.Contact

WHERE ContactID <= 100;

CHAPTER 8 ■ T-SQL ENCRYPTION198

794Xch08final.qxd  3/29/07  4:35 PM  Page 198



Then the temporary table is updated with the decrypted form of the encrypted data

it contains, via the DecryptByKey function:

UPDATE #Temp

SET FirstName = DecryptByKey(eFirstName),

MiddleName = DecryptByKey(eMiddleName),

LastName = DecryptByKey(eLastName);

Finally, the results are displayed with a SELECT statement and some cleanup is per-

formed, including dropping the temporary table and removing the keys and certificates:

SELECT ContactID,

FirstName,

MiddleName,

LastName,

eFirstName,

eMiddleName,

eLastName

FROM #Temp;

DROP TABLE #Temp;

CLOSE SYMMETRIC KEY TestSymmetricKey;

DROP SYMMETRIC KEY TestSymmetricKey;

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

In addition to DecryptByKey, SQL Server 2005 offers the following additional symmet-

ric key decryption functions:

DecryptByKeyAutoAsymKey ( asym_key_id, password, ciphertext

[ , add_authenticator, authenticator ] )

DecryptByKeyAutoCert ( certificate_id, password , ciphertext

[ , add_authenticator, authenticator ] )

DecryptByKeyAutoAsymKey automatically opens the asymmetric key protecting the

symmetric key used to encrypt the ciphertext. If a password is used to encrypt the asym-

metric key, that same password must be passed to the function. If the asymmetric key is

encrypted with the DMK, pass NULL as the password. If an authenticator was used to

encrypt the ciphertext, set add_authenticator to 1 and pass the authenticator value to

the function.

CHAPTER 8 ■ T-SQL ENCRYPTION 199

794Xch08final.qxd  3/29/07  4:35 PM  Page 199



If the symmetric key is protected by certificate, you can use the DecryptByKeyAutoCert

function. This function automatically opens the certificate protecting the symmetric key

and decrypts the ciphertext with the symmetric key. As with DecryptByKeyAutoAsymKey,

you must specify the password used to protect the certificate, or NULL if it is protected by

the DMK. If an authenticator was specified when ciphertext was encrypted,

add_authenticator should be set to 1 and the authenticator value must be passed in.

Hashing and Encryption Without Keys
SQL Server 2005 provides a few additional functions for encryption and decryption with-

out keys and for one-way hashing:

EncryptByPassPhrase ( passphrase, plaintext

[ , add_authenticator, authenticator ] )

DecryptByPassPhrase ( passphrase, ciphertext

[ , add_authenticator, authenticator ] )

EncryptByPassPhrase encrypts the plaintext passed in with the passphrase. The func-

tion derives a temporary encryption key from the passphrase and uses it to encrypt the

plaintext. If an authenticator is desired, set add_authenticator to 1 and pass in an authen-

ticator value. EncryptByPassPhrase uses the TRIPLE_DES algorithm to encrypt the plaintext

passed in.

DecryptByPassPhrase performs the opposite function. It uses the passphrase passed in

to generate a temporary encryption key that it then uses to decrypt the ciphertext passed

in. If an authenticator was used to encrypt the ciphertext, set add_authenticator to 1 and

pass in an authenticator value.

The HashBytes function performs a one-way hash on the data passed to it and returns

the hash value. A hash value is like a “fingerprint” for any given data. The HashBytes func-

tion has the following form:

HashBytes ( { 'MD2' | 'MD4' | 'MD5' | 'SHA' | 'SHA1' }, input )

The first parameter specifies the hash algorithm to use. The input parameter is the

data to hash. The MD2, MD4, and MD5 algorithms produce a 128-bit (16-byte) hash result.

The SHA and SHA1 algorithms produce a 160-bit (20-byte) hash result. The result of the

HashBytes function is varbinary. Listing 8-6 demonstrates the EncryptByPassPhrase,

DecryptByPassPhrase, and HashBytes functions.

CHAPTER 8 ■ T-SQL ENCRYPTION200

794Xch08final.qxd  3/29/07  4:35 PM  Page 200



■Caution For highly secure applications, the MD2, MD4, and MD5 series of hashes should be avoided.
Researchers have over the past couple of years produced meaningful hash collisions with these algorithms
that have revealed their vulnerability to hacker attacks. A hash collision is a string of bytes that produces a
hash value that is identical to another string of bytes. A meaningful hash collision is one that can be pro-
duced with meaningful (or apparently meaningful) strings of bytes. Generating a hash collision by modifying
the content of a certificate would be an example of a meaningful hash collision.

Listing 8-6. Encryption and Decryption by Passphrase and Byte Hashing

DECLARE @plaintext NVARCHAR(256)

DECLARE @enctext VARBINARY(512)

DECLARE @dectext NVARCHAR(256)

SELECT @plaintext = N'To be, or not to be: that is the question: ' +

N'Whether ''tis nobler in the mind to suffer ' +

N'The slings and arrows of outrageous fortune, ' +

N'Or to take arms against a sea of troubles '

SELECT @enctext = EncryptByPassPhrase (N'Shakespeare', @plaintext);

SELECT @dectext = CAST (DecryptByPassPhrase (N'Shakespeare', @enctext) AS

NVARCHAR(128));

SELECT @plaintext;

SELECT @enctext;

SELECT @dectext;

SELECT HashBytes ('SHA1', @plaintext);

Summary
Prior to SQL Server 2005, database encryption functionality could be achieved only

through third-party tools or by creating your own encryption and decryption functions.

SQL 2005 T-SQL adds encryption and decryption functionality that you can use directly

in your databases. The tight integration of Windows secure encryption functionality with

T-SQL means that data encryption in a database is now easier and more secure than ever.

CHAPTER 8 ■ T-SQL ENCRYPTION 201

794Xch08final.qxd  3/29/07  4:35 PM  Page 201



This chapter discussed the SQL Server hierarchical encryption model. SMKs, DMKs,

certificates, asymmetric keys, and symmetric keys were all covered. In addition, the func-

tions that encrypt and decrypt data using these securables were discussed. Finally this

chapter ended with a discussion of encryption and decryption by passphrase and the

one-way hash function.

The next chapter will cover the art of T-SQL debugging and error handling.

CHAPTER 8 ■ T-SQL ENCRYPTION202

794Xch08final.qxd  3/29/07  4:35 PM  Page 202



Error Handling and Debugging

In prior versions of SQL Server, error handling was limited to the @@error system func-

tion. T-SQL in SQL Server 2005 still has this system function available but also adds

structured error handling similar to that offered by other high-level languages such as

C++, C#, and VB. This chapter discusses legacy T-SQL error handling functionality and

the new structured error handling model in T-SQL. This chapter also introduces tools

useful for debugging server-side code including T-SQL statements and the Visual Stu-

dio IDE.

Legacy Error Handling
In prior versions of SQL Server, the primary method of handling errors was the @@error

system function. This function returns an int value representing the current error code.

An @@error value of 0 means no error occurred. One of the major limitations of this func-

tion is that it is automatically reset to 0 after every successful statement. So you cannot

have any statements between the code that you expect to produce an error and the code

that checks the value of @@error. This also means that after @@error is checked, it is auto-

matically reset to 0, so you can’t both check the value of @@error and RETURN @@error from

within a stored procedure. Listing 9-1 demonstrates a stored procedure that generates

an error and attempts to print the error code from within the procedure and return the

value of @@error to the caller.

Listing 9-1. Incorrect Error Handling Sample with @@error

CREATE PROCEDURE dbo.TestError

AS

BEGIN

INSERT INTO Person.Address (AddressID)

VALUES (1);

PRINT N'Error Code = ' + CAST(@@error AS NVARCHAR(10));

RETURN @@error;

203

C H A P T E R  9

794Xch09final.qxd  3/29/07  4:33 PM  Page 203



END

GO

DECLARE @ret INT;

EXEC @ret = dbo.TestError;

PRINT N'Return value = ' + CAST(@ret AS NVARCHAR(10));

The TestError procedure in Listing 9-1 demonstrates the problem with @@error. The

result of executing the procedure should be similar to the following:

Msg 544, Level 16, State 1, Procedure TestError, Line 4

Cannot insert explicit value for identity column in table 'Address' when

IDENTITY_INSERT is set to OFF.

Error Code = 544

Return value = 0

As you can see, the error code is 544, but a value of 0 (no error) is returned to the

caller. The problem is with the following line in the stored procedure:

PRINT N'Error Code = ' + CAST(@@error AS NVARCHAR(10));

The PRINT statement automatically resets the value of @@error after it executes, mean-

ing you can’t test or retrieve the same value of @@error afterward (it will be 0 every time).

The workaround is to store the value of @@error in a local variable immediately after the

statement you suspect might fail (in this case the INSERT statement). Listing 9-2 demon-

strates this method of using @@error.

Listing 9-2. Corrected Error Handling with @@error

CREATE PROCEDURE dbo.TestError2

AS

BEGIN

DECLARE @e INT;

INSERT INTO Person.Address (AddressID)

VALUES (1);

SELECT @e = @@error;

PRINT N'Error Code = ' + CAST(@e AS NVARCHAR(10));

RETURN @e;

END

GO

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING204

794Xch09final.qxd  3/29/07  4:33 PM  Page 204



DECLARE @ret INT;

EXEC @ret = dbo.TestError2;

PRINT N'Return value = ' + CAST(@ret AS NVARCHAR(10));

By storing the value of @@error in a variable immediately after the statement you sus-

pect might cause an error, you can test or retrieve the value as often as you need for

further processing. The following is the result of the new procedure:

Msg 544, Level 16, State 1, Procedure TestError2, Line 5

Cannot insert explicit value for identity column in table 'Address' when

IDENTITY_INSERT is set to OFF.

Error Code = 544

Return value = 544

In this case, the proper @@error code is both printed and returned to the caller.

TRY…CATCH
SQL Server 2005 adds the TRY...CATCH model of error handling common in modern lan-

guages such as C# and VB. With TRY...CATCH you wrap the code you suspect could cause

an error in a BEGIN TRY...END TRY block. This block is immediately followed by a BEGIN

CATCH...END CATCH block that will be invoked only if the statements in the TRY block cause

an error. The following is the precise syntax for the T-SQL TRY...CATCH statement:

BEGIN TRY

sql_statement; [ ...n ]

END TRY

BEGIN CATCH

sql_statement; [ ...n ]

END CATCH;

The sql_statements in the BEGIN TRY...END TRY block execute normally. If the block

completes without error, the sql_statements between the BEGIN CATCH...END CATCH block

are skipped. If an error does occur while the BEGIN TRY...END TRY block is executing,

control transfers to the sql_statements in the BEGIN CATCH...END CATCH block.

The CATCH block exposes several functions for determining exactly what error

occurred and where it occurred. These functions are available only between the BEGIN

CATCH...END CATCH keywords, and only during error handling when control has been

transferred to it from an error in a TRY block. The functions are the following:

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING 205

794Xch09final.qxd  3/29/07  4:33 PM  Page 205



• ERROR_LINE() is the line number on which the error occurred.

• ERROR_MESSAGE() is the complete text of the error message generated.

• ERROR_PROCEDURE() is the name of the stored procedure or trigger where the error

occurred.

• ERROR_NUMBER() is the error number.

• ERROR_SEVERITY() is the severity level of the error.

• ERROR_STATE() is the state number of the error.

These functions are limited in scope and only return meaningful values inside of a

CATCH block. If you try to use them outside of a CATCH block, they return NULL. Listing 9-3

demonstrates what the previous sample code might look like in TRY...CATCH form.

Listing 9-3. Sample TRY…CATCH Error Handling

CREATE PROCEDURE dbo.TestError3

AS

BEGIN

DECLARE @e INT;

SELECT @e = 0;

BEGIN TRY

INSERT INTO Person.Address (AddressID)

VALUES (1);

END TRY

BEGIN CATCH

SELECT @e = ERROR_NUMBER();

PRINT N'Error Code = ' + CAST(@e AS NVARCHAR(10));

PRINT N'Error Procedure = ' + ERROR_PROCEDURE();

PRINT N'Error Message = ' + ERROR_MESSAGE();

END CATCH

RETURN @e;

END

GO

DECLARE @ret INT;

EXEC @ret = dbo.TestError3;

PRINT N'Return value = ' + CAST(@ret AS NVARCHAR(10));

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING206

794Xch09final.qxd  3/29/07  4:33 PM  Page 206



The result is similar to Listing 9-2, but TRY...CATCH gives you more control and flexi-

bility over the output:

Error Code = 544

Error Procedure = TestError3

Error Message = Cannot insert explicit value for identity column in table

'Address'

when IDENTITY_INSERT is set to OFF.

Return value = 544

TRY...CATCH blocks can be nested. You can have TRY...CATCH blocks within other

TRY blocks or CATCH blocks to handle errors that might be generated within them. You

can also test the state of transactions within a CATCH block by using the XACT_STATE

function. Table 9-1 lists the return values for XACT_STATE and how you should handle

each in your CATCH block.

Table 9-1. XACT_STATE Function Return Values

XACT_STATE Meaning

-1 There is an uncommittable transaction pending. Issue a ROLLBACK TRANSACTION
statement.

0 There is no transaction pending. No action is necessary.

1 There is a committable transaction pending. Issue a COMMIT TRANSACTION
statement.

The T-SQL TRY...CATCH method of error handling has certain limitations attached to

it. For one, TRY...CATCH can only capture errors that have a severity higher than 10 that

do not close the database connection. The following errors are not caught:

• Any errors with a severity of 10 or lower will not be caught.

• Severity levels of 20 or higher are also not caught because they close the database

connection immediately.

• Compile-time errors, such as syntax errors, are not caught by TRY...CATCH.

• Statement-level recompilation errors, such as object-name resolution errors, are

not caught due to SQL Server’s deferred-name resolution.

Also, errors captured by a TRY...CATCH block are not returned to the caller. You can,

however, use the RAISERROR statement described in the next section to return the error to

the caller.

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING 207

794Xch09final.qxd  3/29/07  4:33 PM  Page 207



RAISERROR
The RAISERROR statement is a legacy T-SQL statement that allows you to generate an error

at run time. It is similar to the throw functions used in languages such as C++ and C# that

throw or rethrow exceptions. The following is the format of the RAISERROR statement:

RAISERROR ( { msg_id | msg_str }, severity, state

[ , argument [ , ... n ] ] )

[ WITH { LOG | NOWAIT | SETERROR } [ , ... n ] ]

RAISERROR takes several parameters that I describe here:

• Msg_id is an int ID number for a user-defined error message. User-defined error

messages can be added with the sp_addmessage system stored procedure.

• Msg_str is a user-supplied ad hoc error message. If msg_str is used instead of msg_id,

the error generated will have an ID of 50000.

• Severity is the severity level of the error message. Severity levels between 0 and 10

are considered informational messages. Levels from 11 to 18 are considered errors,

and levels from 19 to 25 are considered fatal errors. Only sysadmin users or users

with ALTER TRACE permissions can specify RAISERROR severity levels higher than 18,

and the WITH LOG option must be specified.

• State is a user-defined informational value from 1 to 127 that can help in locating

the specific errors within code.

• The optional argument parameters are values that are substituted for special for-

matting codes in the error message.

• The WITH keyword specifies one or more options that can be set for RAISERROR.

These options are the following:

• The LOG option logs the error in the application log and SQL error log. Only

a sysadmin or user with ALTER TRACE permissions can specify this option.

• The NOWAIT option sends the message immediately to the client.

• The SETERROR option sets the @@error and ERROR_NUMBER functions to msg_id,

for any severity level.

RAISERROR can be used within a TRY or CATCH block to generate errors. Within the TRY

block, if RAISERROR generates an error with severity between 11 and 19, control passes to

the CATCH block. For errors with severity of 10 or lower, processing continues in the TRY

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING208

794Xch09final.qxd  3/29/07  4:33 PM  Page 208



block. For errors with severity of 20 or higher, the client connection is terminated and

control does not pass to the CATCH block. For these high-severity errors, the error is

returned to the caller.

Debugging Tools
The PRINT statement demonstrated in Listing 9-3 is a simple and useful server-side

debugging tool. It simply prints constants or variable values to standard output. When

errors or unexpected results are being returned by a stored procedure or script, some

well-placed PRINT statements can often help to quickly and easily locate the cause of the

problem. PRINT works from within stored procedures and batches, but does not work

inside of user-defined functions because of built-in restrictions on function side effects.

While SSMS doesn’t offer much in the way of debugging tools, Visual Studio Pro

and Team editions have an excellent facility for stepping through stored procedures

and user-defined functions just like any VB or C# application. The following describes

how it works.

In Visual Studio, select Tools ➤ Connect to Database to create a new database con-

nection, as shown in Figure 9-1.

In the Add Connection window select the proper connection settings to connect to

your server and database as shown in Figure 9-2.

The Visual Studio Server Explorer will appear with your new connection in it. Open

up the Stored Procedures folder under your server and locate the stored procedure you

wish to debug, as shown in Figure 9-3.

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING 209

Figure 9-1. Connect to Database on the Tools menu

794Xch09final.qxd  3/29/07  4:33 PM  Page 209



CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING210

Figure 9-2. The Add Connection window

Figure 9-3. Choosing a stored procedure to debug in the Server Explorer

794Xch09final.qxd  3/29/07  4:33 PM  Page 210



The next step is to right-click the stored procedure and select Step Into Stored Proce-

dure from the pop-up menu as shown in Figure 9-4.

If your stored procedure requires parameters, the Run Stored Procedure window pops

up and asks you to enter values for those parameters. In this example we’ll enter 770 for

the @StartProductID and 7/10/2001 as the @CheckDate. Figure 9-5 demonstrates this.

After you enter the parameters, the procedure will begin running in debug mode

in Visual Studio. Visual Studio shows the script and highlights each line in yellow as you

step through it. Visual Studio debug mode is shown in Figure 9-6. Just as when debug-

ging other Visual Studio programs, you can set breakpoints by clicking the left border

and using the Visual Studio Continue (F5), Stop Debugging (Shift + F5), Step Over (F10),

Step Into (F11), and Step Out (Shift + F11) commands. You can also add Watches and

view Locals to inspect parameter and variable values as your code executes.

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING 211

Figure 9-4. Step Into Stored Procedure from Server Explorer

Figure 9-5. Entering parameter values in the Run Stored Procedure window

794Xch09final.qxd  3/29/07  4:33 PM  Page 211



Any result sets and return values from the stored procedure are shown in the Visual

Studio Output window as shown in Figure 9-7.

You can use Visual Studio to debug stored procedures and user-defined functions in

this manner.

■Note If you are debugging on a remote server, you may have to have your database administrator set up
debugging on the server and apply the correct permissions so you can access debugging functionality. This
process is described in several documents on MSDN: http://msdn.microsoft.com/library/default.
asp?url=/library/en-us/vsdebug/html/vxlrfsettingupsqldebugging.asp.

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING212

Figure 9-6. Stepping through a stored procedure in Visual Studio debug mode

Figure 9-7. The Visual Studio Output window

794Xch09final.qxd  3/29/07  4:33 PM  Page 212



Summary
SQL Server 2005 includes legacy error-handling functionality via the @@error system

function and the RAISERROR statement. It also includes new structured error handling in

the form of TRY...CATCH error-handling blocks.

SQL Server 2005 also provides debugging functionality that includes tools as simple

as the basic T-SQL PRINT statement and the more advanced T-SQL debugging capabilities

available in Visual Studio Pro and Team editions. This chapter introduced Visual Studio

debugging functionality and how to use it to step through your server-side code.

The next chapter discusses dynamic SQL and what it can do for you. 

CHAPTER 9 ■ ERROR HANDLING AND DEBUGGING 213

794Xch09final.qxd  3/29/07  4:33 PM  Page 213



794Xch09final.qxd  3/29/07  4:33 PM  Page 214



Dynamic SQL

SQL Server MVP Erland Sommarskog said it best: dynamic SQL is a curse and a

blessing. Put simply, dynamic SQL is a means of constructing SQL statements as

strings in your server-side applications and executing them dynamically (“on the fly”).

When used properly, dynamic SQL can be used to generate complex queries at run

time, in some cases improve performance, and do tasks that just aren’t doable (or are

extremely difficult) in nondynamic T-SQL. The downside is that there are numerous

ways to shoot yourself in the foot with dynamic SQL. If not done properly, dynamic

SQL can open up security holes in your system big enough to drive a truck through. 

In this chapter I will discuss the various methods of executing dynamic SQL, as well 

as some of its risks and rewards.

The EXECUTE Statement
The most basic form of dynamic SQL is achieved by simply passing a SQL query or other

instruction as a string to the EXECUTE statement (often abbreviated EXEC). The following is

the format of the dynamic SQL EXECUTE statement:

EXECUTE (sql_statement)

The sql_statement is a char, varchar, nchar, or nvarchar constant or variable, including

the (max) data types. Listing 10-1 shows the most basic form of dynamic SQL with an

EXECUTE statement and a string constant.

Listing 10-1. Basic EXECUTE Statement Dynamic SQL

EXECUTE (N'SELECT ProductID FROM Production.Product')

As you can see there is no real advantage to performing dynamic SQL on a string

constant. A simple SELECT statement without the EXECUTE would perform the same func-

tion and return the same result. The true power of dynamic SQL is that you can build a

SQL statement or query dynamically and execute it. Listing 10-2 demonstrates how this

can be done. 215

C H A P T E R  1 0

794Xch10final.qxd  3/29/07  4:31 PM  Page 215



Listing 10-2. More Complex Example of Dynamic SQL with EXECUTE

DECLARE @min_product_id INT;

SELECT @min_product_id = 500;

DECLARE @sql_stmt NVARCHAR(128);

SELECT @sql_stmt = N'SELECT ProductID ' +

N'FROM Production.Product ' +

N'WHERE ProductID >= ' + CAST(@min_product_id AS NVARCHAR(10));

EXECUTE (@sql_stmt);

SQL Injection and Dynamic SQL

In Listing 10-2 the variable @sql_stmt contains the dynamic SQL query. The query is built

dynamically by appending the minimum product ID to the WHERE clause. This is not the rec-

ommended method of performing this type of query, and is only shown here to demonstrate

how this type of dynamic query is often built.

One of the problems with this method is that you lose some of the benefits of cached

query plan execution. SQL Server 2005 has some features that can help in this area, includ-

ing parameter sniffing, but there’s no guarantee (especially for complex queries) that SQL

Server will be able to reuse cached query execution plans as your query changes.

Another major problem is SQL injection. Although not really a problem when

appending an integer value to the end of a dynamic query as done previously, SQL injec-

tion can provide a back door for hackers trying to access or destroy your data when you

append strings to the end of your dynamic SQL queries. Take a look at the innocent-

looking dynamic SQL query in Listing 10-3. I discuss how a hacker could wreak havoc

with this query after the listing.

Listing 10-3. Basic Dynamic SQL Query with a String Appended

DECLARE @product_name NVARCHAR(50);

SELECT @product_name = N'Mountain';

DECLARE @sql_stmt NVARCHAR(128);

SELECT @sql_stmt = N'SELECT ProductID, Name ' +

N'FROM Production.Product ' +

N'WHERE Name LIKE ''' +

@product_name + N'%''';

EXECUTE (@sql_stmt);

CHAPTER 10 ■ DYNAMIC SQL216

794Xch10final.qxd  3/29/07  4:31 PM  Page 216



This query simply returns all product IDs and names of all products that begin with

the string Mountain. The problem is with how SQL Server interprets the concatenated

string. The EXECUTE statement sees the following string:

SELECT ProductID, Name

FROM Production.Product

WHERE Name LIKE 'Mountain%'

A simple substitution for @product_name can execute other unwanted statements on

your server. This is especially true with data coming from an external source (i.e., the

front end or application layer). Consider the following change to Listing 10-3:

SELECT @product_name = N'''; SELECT * FROM Production.ProductInventory; --'

The following is the new statement EXECUTE sees:

SELECT ProductID, Name

FROM Production.Product

WHERE Name LIKE ''; 

SELECT * 

FROM Production.ProductInventory; --%'

CHAPTER 10 ■ DYNAMIC SQL 217

SINGLE QUOTES IN DYNAMIC SQL

When you want to include single quotes in a dynamic SQL query, you must escape them since single
quotes are string delimiters in T-SQL. To escape single quotes in a string is fairly simple in theory: just
double them up. In practice, however, trying to read a complex dynamic SQL query with a lot of escaped
quotes can become confusing and is often a source of errors in dynamic SQL. Escaped quotes can make
dynamic SQL very difficult to read and can easily be mismatched and have the effect of making your
dynamic SQL hard to follow and debug.

One method of handling single-quote escaping is to use the REPLACE string function to escape
single quotes in strings at run time. The format to escape single quotes with REPLACE is string =

REPLACE (string, '''', ''''''). This can be further abstracted and your other code simplified
by coding the REPLACE function once in a user-defined function. An example of a user-defined function
to escape quotes is given here:

CREATE FUNCTION dbo.fnEscapeQuotes(@string NVARCHAR(4000))

RETURNS NVARCHAR(4000)

AS

BEGIN

RETURN REPLACE(@string, '''', '''''');

END;

794Xch10final.qxd  3/29/07  4:31 PM  Page 217



The hacker has now turned your SQL query into two queries, effectively bypassing the

first query and running his own afterward. The hacker could be even more malicious and

issue INSERT, UPDATE, DELETE, DROP TABLE, TRUNCATE TABLE, or other statements to destroy data

or open himself a back door into your system. Depending on how secure your server is,

a hacker could grant himself administrator rights, retrieve and modify data stored in your

server’s file system, or even take control of your server.

The only justification for using the string concatenation method with EXECUTE is if

you have to dynamically name the tables or columns in your statements. And that is far

rarer than most people think. In fact, the only time this is usually necessary is if you need

to dynamically generate SQL statements around database, table, or column names—if

you are creating a dynamic pivot table type query or if you are coding an administration

tool for SQL Server, for instance.

If you must use the string-concatenation and EXECUTE method, be sure to take the fol-

lowing precautions with the strings being passed in from the front end:

• Don’t ever trust data from the front end. Always validate the data. If you are

expecting only the letters A–Z and the numbers 0–9, reject all other characters in

the input data.

• If you allow apostrophes in your data, escape them (double them up) before

using them.

• Don’t allow semicolons, parentheses, and double dashes (--) in the input if pos-

sible. These characters have special significance to SQL Server and should be

avoided when possible. If you must allow these characters, scrutinize the input

thoroughly before using it.

• Reject strings that contain binary data, escape sequences, and multiline comment

markers (/* and */).

• Validate XML input data against a schema.

• Take extra special care when input data contains xp_ or sp_, as it may be an attempt

to run procedures or extended stored procedures on your server.

More on Validation

Usually data validation is performed client-side, on the front end, in the application

layer, or in the middle tiers of n-tier systems. In critical situations it is important to also

perform server-side validation of some sort. Triggers and check constraints can perform

this type of validation on data before it’s inserted into a table, and you can create user-

defined functions or stored procedures to perform this type of validation on dynamic

SQL before executing it. Listing 10-4 is a UDF that uses the Numbers table created in

CHAPTER 10 ■ DYNAMIC SQL218

794Xch10final.qxd  3/29/07  4:31 PM  Page 218



Chapter 5 to perform basic validation on a string, ensuring that it contains only the let-

ters A–Z, digits 0–9, and the underscore character (_), which is a common validation used

on usernames, passwords, and other simple data.

Listing 10-4. Simple T-SQL String Validation Function

CREATE FUNCTION dbo.fnValidateString (@string NVARCHAR(4000))

RETURNS INT

AS

BEGIN

RETURN (

SELECT SUM (

CASE 

WHEN SUBSTRING(@string, n.Num, 1) LIKE N'[A-Z0-9\_]' ESCAPE '\'

THEN 0

ELSE 1 

END)

FROM dbo.Numbers n

WHERE n.Num <= LEN(@string) 

)

END

The function in Listing 10-4 uses the Numbers table created in Chapter 5 to validate

each character in the given string. The result is the number of invalid characters in the

string: a value of 0 indicates all characters in the string are valid. More complex valida-

tions can be performed with the LIKE operator or procedural code to ensure data is in 

a prescribed format as well.

Troubleshooting Dynamic SQL

One of the main disadvantages to dynamic SQL is in debugging and troubleshooting

code. Complex dynamic SQL queries can be difficult to troubleshoot, and very simple

syntax or other errors can be difficult to locate. Fortunately there is a fairly simple fix for

that: write your troublesome query directly in T-SQL, replacing parameters with potential

values. Highlight the code, and parse—or execute—it. Any syntax errors will be detected

and described by SQL Server immediately. Fix the errors and repeat until all errors have

been fixed. Then, and only then, revert the values back to their parameter names and put

it in a SQL statement. Another handy method of troubleshooting is to PRINT the dynamic

SQL statement before executing it. Highlight, copy, and attempt to parse or run it in SQL

Server Management Studio. You should be able to quickly and easily locate any problems

and fix them as necessary.

CHAPTER 10 ■ DYNAMIC SQL 219

794Xch10final.qxd  3/29/07  4:31 PM  Page 219



One of the restrictions on dynamic SQL is that it cannot be executed in a user-

defined function. This restriction is in place because user-defined functions cannot

produce side effects that change the database. Dynamic SQL offers opportunities to cir-

cumvent this restriction, so it is simply not allowed.

sp_executesql
The sp_executesql stored procedure is a second method of executing dynamic SQL. When

used correctly, it is safer than the simple EXECUTE method of concatenating strings and

executing them. The following is the format for sp_executesql:

sp_executesql [ @stmt = ] sql_statement

[

{ , [ @params= ] N'@parameter_name data_type [ OUT | OUTPUT ][ , ... n]' } 

{ , [ @parameter_name= ] 'value' [ , ... n ] }

]

Like EXECUTE, sp_executesql takes a string constant or variable as a SQL statement to

execute. Unlike EXECUTE the sql_statement must be an NCHAR or NVARCHAR. The sp_executesql

procedure offers another advantage over the EXECUTE method: you can specify your

parameters separately from the statement. When you specify the parameters separately

instead of concatenating them, SQL Server passes the parameters to sp_executesql sepa-

rately. It then substitutes the values of the parameters in the sql_statement. It does not

concatenate the parameters into the sql_statement, and in that way it protects against

SQL injection attacks. A limitation to this approach is that you cannot use the parameters

in your sql_statement in place of table, column, or other object names. Sp_executesql

parameterization also improves query execution plan cache reuse, which can help per-

formance. Listing 10-5 shows how to parameterize the previous sample.

Listing 10-5. Dynamic SQL sp_executesql Parameterized Method

DECLARE @product_name NVARCHAR(50);

SELECT @product_name = N'Mountain%';

DECLARE @sql_stmt NVARCHAR(128);

SELECT @sql_stmt = N'SELECT ProductID, Name ' +

N'FROM Production.Product ' +

N'WHERE Name LIKE @name';

EXECUTE sp_executesql @sql_stmt, 

N'@name NVARCHAR(50)', 

@name = @product_name;

CHAPTER 10 ■ DYNAMIC SQL220

794Xch10final.qxd  3/29/07  4:31 PM  Page 220



Dynamic SQL and Scope
Dynamic SQL executes in its own scope. What this means is that variables and temporary

tables created in a dynamic SQL statement or statement batch are not directly available

to the calling routine. Consider the example in Listing 10-6.

Listing 10-6. Limited Scope of Dynamic SQL

DECLARE @sql_stmt NVARCHAR(512);

SELECT @sql_stmt = N'CREATE TABLE #Temp_ProductIDs ' +

N'(ProductID INT NOT NULL PRIMARY KEY); ' +

N'INSERT INTO #Temp_ProductIDs (ProductID) ' +

N'SELECT ProductID ' +

N'FROM Production.Product;' ;

EXECUTE (@sql_stmt);

SELECT ProductID

FROM #Temp_ProductIDs;

The sample in Listing 10-6 generates the following error message:

(506 row(s) affected)

Msg 208, Level 16, State 0, Line 10

Invalid object name '#Temp_ProductIDs'.

The message (506 row(s) affected) indicates that the temporary table creation and

INSERT INTO statement of the dynamic SQL executed properly and without error. The

problem is with the SELECT statement after the EXECUTE. Since the #Temp_ProductIDs table

was created within the scope of the dynamic SQL statement, once the dynamic SQL

statement completed, the temporary table was dropped. Once SQL Server reaches the

SELECT statement, the #Temp_ProductIDs table no longer exists. One way to work around

this issue is to create the temporary table before the dynamic SQL executes. The

dynamic SQL is able to access and update the temporary table created by the caller,

as shown in Listing 10-7.

CHAPTER 10 ■ DYNAMIC SQL 221

794Xch10final.qxd  3/29/07  4:31 PM  Page 221



Listing 10-7. Creating a Temp Table Accessible to Dynamic SQL and the Caller

CREATE TABLE #Temp_ProductIDs

(ProductID INT NOT NULL PRIMARY KEY);

DECLARE @sql_stmt NVARCHAR(512);

SELECT @sql_stmt = N'INSERT INTO #Temp_ProductIDs (ProductID) ' +

N'SELECT ProductID ' +

N'FROM Production.Product;' ;

EXECUTE (@sql_stmt);

SELECT ProductID

FROM #Temp_ProductIDs;

Table variables and other variables declared by the caller are not accessible to

dynamic SQL, however. Variables and table variables have well-defined scope. They are

only available to the batch, function, or procedure in which they are created and are not

available to dynamic SQL or other called routines.

Client-Side Parameterization
Parameterization of dynamic SQL queries is not just a good idea server-side; it’s also a

great idea to parameterize queries instead of building dynamic SQL strings on the front

end. Apart from the security implications, query parameterization provides cached

query execution plan reuse, making queries more efficient than their concatenated

string counterparts. Microsoft .NET languages provide the tools necessary to parame-

terize queries from the application layer in the System.Data.SqlClient and System.Data

namespaces. Although this book is not a .NET application programming book per se,

this topic is important enough to warrant further explanation.

In the old days (before .NET), ASP, VB 6, and SQL 6.5 application programmers often

created SQL queries in their client-side applications by simply concatenating parameter

values into SQL query strings. Unfortunately, this exposes the same security and per-

formance problems that occur when you concatenate strings together to generate

server-side dynamic SQL. A lot of application programmers carried this string concatena-

tion approach to building SQL queries forward with them to the newer generations of

SQL Server and the .NET programming languages, but there is a better way. Listing 10-8

demonstrates simple client-side parameterization in VB 2005. To keep the code simple

I’ve eliminated the exception handling that I would normally include. Always use

Try...Catch exception handling in production .NET code. To use the sample code you

CHAPTER 10 ■ DYNAMIC SQL222

794Xch10final.qxd  3/29/07  4:31 PM  Page 222



must Import the System.Data.SqlClient and System.Data namespaces (see the MSDN

library for more details).

Listing 10-8. Sample VB 2005 Client-Side Parameterized Query

Dim SqlCon As New SqlConnection("SERVER=(local);INITIAL " & _ 

"CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

SqlCon.Open()

Dim SqlCmd As New SqlCommand("SELECT ProductId, Name FROM " & _ 

"Production.Product WHERE Name LIKE @name", SqlCon)

SqlCmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = "Mountain%"

Dim SqlDr As SqlDataReader = SqlCmd.ExecuteReader()

While (SqlDr.Read())

Console.WriteLine("Item {0} = {1}", SqlDr.Item("ProductId"), SqlDr.Item("Name"))

End While

SqlDr.Close()

SqlCmd.Dispose()

SqlCon.Dispose()

The code in Listing 10-8 sets up a new SqlConnection to the SQL Server and connects

to the AdventureWorks database using Windows integrated security. Of course, you’ll need

to modify the connection string to suit your needs:

Dim SqlCon As New SqlConnection("SERVER=(local);INITIAL " & _ 

"CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

SqlCon.Open()

Next, the sample creates a simple SqlCommand. Notice the @name parameter in the

query string itself. This is the indicator to SQL Server that it should use a parameterized

value in the query:

Dim SqlCmd As New SqlCommand("SELECT ProductId, Name FROM " & _ 

"Production.Product WHERE Name LIKE @name", SqlCon)

Then the @name parameter is actually added to the SqlCommand Parameters collection. I

assign the string value Mountain% to the parameter with the same statement:

SqlCmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = "Mountain%"

CHAPTER 10 ■ DYNAMIC SQL 223

794Xch10final.qxd  3/29/07  4:31 PM  Page 223



Finally the code uses a SqlDataReader to loop through the results, prints the results to

standard output, and performs a little cleanup:

Dim SqlDr As SqlDataReader = SqlCmd.ExecuteReader()

While (SqlDr.Read())

Console.WriteLine("Item {0} = {1}", SqlDr.Item("ProductId"), SqlDr.Item("Name"))

End While

SqlDr.Close()

SqlCmd.Dispose()

SqlCon.Dispose()

Because the query is parameterized, the parameters are handled separately from

the query string by SQL Server; just like when you use sp_executesql with server-side

parameterized queries. Also like sp_executesql, client-side parameterization protects

you against SQL injection attacks and provides the performance benefits of cached

query execution plan reuse. Listing 10-9 is a C# 2005 version of the code in Listing 10-8.

In C# you must use the using statement to use the System.Data.SqlClient and

System.Data namespaces (see the MSDN Library for details).

Listing 10-9. C# Version of Client-Side Query Parameterization

SqlConnection SqlCon = new SqlConnection("SERVER=(local);INITIAL " & _

"CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;");

SqlCon.Open();

SqlCommand SqlCmd = new SqlCommand("SELECT ProductId, Name FROM " & _

"Production.Product WHERE Name LIKE @name", SqlCon);

SqlCmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = "Mountain%";

SqlDataReader SqlDr = SqlCmd.ExecuteReader();

while (SqlDr.Read())

{

Console.WriteLine("Item {0} = {1}", SqlDr.GetValue(0), SqlDr.GetValue(1));

}

SqlDr.Close();

SqlCmd.Dispose();

SqlCon.Dispose();

CHAPTER 10 ■ DYNAMIC SQL224

794Xch10final.qxd  3/29/07  4:31 PM  Page 224



Finally, I end with a VB 2005 code sample showing how not to build query strings on

the client side, demonstrated in Listing 10-10.

Listing 10-10. How Not to Build a Client-Side Query String

Dim SqlCon As New SqlConnection("SERVER=(local);INITIAL " & _

"CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

SqlCon.Open()

Dim Name As String = "Mountain%"

Dim SqlCmd As New SqlCommand("SELECT ProductId, Name FROM " & _

"Production.Product WHERE Name LIKE '" & Name & "'", SqlCon)

Dim SqlDr As SqlDataReader = SqlCmd.ExecuteReader()

While (SqlDr.Read())

Console.WriteLine("Item {0} = {1}", SqlDr.Item("ProductId"), SqlDr.Item("Name"))

End While

SqlDr.Close()

SqlCmd.Dispose()

SqlCon.Dispose()

As you can see, the parameter in this last sample is concatenated into the query

string. This leaves the query wide open to SQL injection as described previously. Avoid

this method of building query strings and instead parameterize your queries.

Summary
Dynamic SQL can be a very useful tool, but it is often incorrectly used. Misuse of

dynamic SQL can have serious implications for the security of your server and data-

bases. Improper use of dynamic SQL can also impact application performance. I

discussed SQL injection and query performance as two of the most compelling rea-

sons to take extra care when using dynamic SQL.

This chapter presented the different approaches to performing server-side dynamic

SQL, including the following:

• The EXECUTE statement

• The sp_executesql system stored procedure

CHAPTER 10 ■ DYNAMIC SQL 225

794Xch10final.qxd  3/29/07  4:31 PM  Page 225



I also talked about dynamic SQL scope, including the following:

• Dynamic SQL access to temporary tables

• Dynamic SQL with variables and table variables

In addition to server-side query parameterization, client-side parameterized queries

were also introduced with .NET code samples.

The next chapter will delve into SQL Server 2005 XML integration and support. I will

review the legacy SQL Server XML functionality, the new xml data type, and the additional

XML functionality built into SQL Server 2005.

CHAPTER 10 ■ DYNAMIC SQL226

794Xch10final.qxd  3/29/07  4:31 PM  Page 226



XML

In SQL Server 2005, XML support has been improved with much tighter T-SQL to XML

integration, a new xml data type, and new functionality to take advantage of XML directly

from your T-SQL code.

SQL Server 2005’s tight XML integration and new xml data type provide streamlined

methods of performing dozens of tasks that used to require clunky code to interface with

COM objects and other tools external to the SQL Server engine. This chapter discusses

the new xml data type and the new XML tools built into T-SQL to take advantage of SQL

Server’s XML functionality.

This chapter discusses the following:

• SQL Server 2005 XQuery support

• The new xml data type and its methods

• FOR XML enhancements and XPath support

• XML indexes

• XSL transformations

• Legacy (SQL Server 2000) XML support

Legacy XML
SQL Server XML functionality was introduced in T-SQL with SQL Server 2000. The

main tools provided to implement this functionality were the FOR XML clause of the

SELECT statement, the OPENXML rowset provider, and the sp_xml_preparedocument and

sp_xml_removedocument system stored procedures. Though the functionality still exists

in SQL Server 2005 and can be useful in some situations, it can be somewhat awkward

to use.

227

C H A P T E R  1 1

794Xch11final.qxd  3/29/07  4:29 PM  Page 227



FOR XML RAW

The FOR XML clause appears at the end of the SELECT statement and can take one of several

formats. The first is the FOR XML RAW clause, shown here:

FOR XML RAW [ ( element_name ) ] [ , BINARY BASE64 ] [ , TYPE ]

[ , ROOT [ ( 'root_name' ) ] ]

[ , { XMLDATA | XMLSCHEMA [ ( 'target_namespace_uri' ) ] } ]

[ , ELEMENTS [ XSINIL | ABSENT ] ]

If the RAW format is used, data is returned in XML format with each row represented

as a node with attributes representing each column. You can specify the element_name (if

you leave it off the default name, row is used). The query in Listing 11-1 demonstrates.

Listing 11-1. Sample FOR XML RAW Clause in a SELECT Statement

SELECT ProductID,

Name,

ProductNumber

FROM Production.Product

WHERE ProductID = 770

FOR XML RAW;

The following is the result of the query (reformatted for easier reading) in Listing 11-1.

<row ProductID="770"

Name="Road-650 Black, 52"

ProductNumber="BK-R50B-52"/>

You can specify several additional options in FOR XML RAW mode, including the

following:

• BINARY BASE64 returns binary data in Base-64 encoded form.

• TYPE returns the results as an xml type.

• ROOT adds a single top-level root element to the results.

• XMLDATA appends an XML-Data Reduced (XDR) schema to the beginning of your

XML result.

CHAPTER 11 ■ XML228

794Xch11final.qxd  3/29/07  4:29 PM  Page 228



• XMLSCHEMA returns an inline XSD (the W3C standard for XML Schema is available at

http://www.w3.org/XML/Schema).

• The ELEMENTS keyword indicates that column data should be returned as subele-

ments instead of attributes. The ELEMENTS keyword can have the following

additional options as well:

• XSINIL specifies that columns with NULL values are included in the result with

an xsi:nil attribute set to true.

• ABSENT specifies that no elements are created for NULL values. ABSENT is the

default action.

FOR XML AUTO

For a query against a single table, the AUTO keyword retrieves data in a format similar to

RAW mode, but the XML node name is the name of the table and not the more generic row.

For queries that join multiple tables, however, rows of the tables on the right-hand side of

the join are generated as subelements in the XML data. The following is the format of the

FOR XML AUTO clause:

FOR XML AUTO [ , BINARY BASE64 ] [ , TYPE ] [ , ROOT [ ( 'root_name' ) ] ]

[ , { XMLDATA | XMLSCHEMA [ ( 'target_namespace_uri' ) ] } ]

[ , ELEMENTS [ XSINIL | ABSENT ] ]

Listing 11-2 demonstrates the FOR XML AUTO clause on a single table.

Listing 11-2. Sample FOR XML AUTO Clause in a SELECT Statement on a Single Table

SELECT ProductID,

Name,

ProductNumber

FROM Production.Product

WHERE ProductID = 770

FOR XML AUTO;

The following is the result of the query in Listing 11-2:

<Production.Product

ProductID="770"

Name="Road-650 Black, 52"

ProductNumber="BK-R50B-52"/>

CHAPTER 11 ■ XML 229

794Xch11final.qxd  3/29/07  4:29 PM  Page 229



Listing 11-3 demonstrates using FOR XML AUTO in a SELECT statement that joins

two tables.

Listing 11-3. Sample FOR XML AUTO Clause in a SELECT Statement on Multiple Tables

SELECT Product.ProductID,

Product.Name,

Product.ProductNumber,

Inventory.Quantity

FROM Production.Product Product

INNER JOIN Production.ProductInventory Inventory

ON Product.ProductID = Inventory.ProductID

WHERE Product.ProductID = 770

FOR XML AUTO;

The XML result of this query takes the following form:

<Product ProductID="770"

Name="Road-650 Black, 52"

ProductNumber="BK-R50B-52">

<Inventory Quantity="104"/>

<Inventory Quantity="123"/>

</Product>

The FOR XML AUTO clause can be further refined by adding the ELEMENTS keyword. Just

as with the FOR XML RAW clause, this keyword transforms the XML column attributes into

subelements, as in Listing 11-4.

Listing 11-4. FOR XML AUTO Sample with ELEMENTS Keyword

SELECT ProductID,

Name,

ProductNumber

FROM Production.Product

WHERE ProductID = 770

FOR XML AUTO, ELEMENTS;

The result of the query in Listing 11-4 looks like this:

CHAPTER 11 ■ XML230

794Xch11final.qxd  3/29/07  4:29 PM  Page 230



<Production.Product>

<ProductID>770</ProductID>

<Name>Road-650 Black, 52</Name>

<ProductNumber>BK-R50B-52</ProductNumber>

</Production.Product>

The additional options of the FOR XML AUTO clause are the same as those of the FOR XML

RAW clause.

FOR XML EXPLICIT

The EXPLICIT keyword is flexible but complex. It allows you to specify the exact hierarchy

of XML elements and attributes. This structure is specified in the SELECT statement itself

using the Element!Tag!Attribute!Directive notation. The SELECT query must return data

in a universal relational format that includes a Tag column defining the level of the cur-

rent tag and a Parent column defining the parent level of the current tag. The remaining

columns are the actual data columns. The FOR XML EXPLICIT clause takes the following

format:

FOR XML EXPLICIT [ , BINARY BASE64 ] [ , TYPE ]

[ , ROOT [ ( 'root_name' ) ] ]

[ , XMLDATA ]

Listing 11-5 demonstrates this type of query.

Listing 11-5. FOR XML EXPLICIT Sample

SELECT 1 AS Tag,

NULL AS Parent,

ProductID AS [Products!1!ProductID!element],

Name AS [Products!1!ProductName],

ProductNumber AS [Products!1!ProductNumber],

NULL AS [Products!2!Quantity]

FROM Production.Product

WHERE ProductID = 770

UNION ALL

CHAPTER 11 ■ XML 231

794Xch11final.qxd  3/29/07  4:29 PM  Page 231



SELECT 2 AS Tag,

1 AS Parent,

NULL,

NULL,

NULL,

Quantity

FROM Production.ProductInventory

WHERE ProductID = 770

FOR XML EXPLICIT;

The results of the query in Listing 11-5 are the following:

<Products ProductName="Road-650 Black, 52"

ProductNumber="BK-R50B-52">

<ProductID>770</ProductID>

<Products Quantity="104"/>

<Products Quantity="123"/>

</Products>

The FOR XML EXPLICIT query defines the top-level items as Tag = 1 and Parent = NULL.

The next level defines the Tag = 2 and Parent = 1, referencing back to the top level. Addi-

tional levels can be added by using the UNION keyword with additional queries that incre-

ment the Tag and reference the next higher level as the Parent. Each column of the query

must be named with the Element!Tag!Attribute!Directive format mentioned previously.

In this format, Element is the name of the XML element, in this case Products. Tag is the

level of the element, which is 1 for top-level elements. Attribute is the name of the attrib-

ute if you want the data in the column to be returned as an XML attribute. If you want the

item to be returned as an XML element, use Attribute to specify the name of the attrib-

ute, and specify a Directive of element. The Directives that can be specified include the

following:

• The hide directive, which is useful when you want to retrieve values for sorting pur-

poses but do not want the specified node included in the resulting XML

• The element directive, which generates an XML element instead of an attribute

• The elementxsinil directive, which generates an element for NULL column values

• The xml directive, which generates an element instead of an attribute, but does not

encode entity values

CHAPTER 11 ■ XML232

794Xch11final.qxd  3/29/07  4:29 PM  Page 232



• The cdata directive, which wraps the data in a CDATA section and does not encode

entities

• The xmltext directive, which wraps the column content in a single tag integrated

with the document

• The id, idref, and idrefs directives, which allow you to create internal document

links

The additional options of the FOR XML EXPLICIT clause are BINARY BASE64, TYPE, ROOT,

and XMLDATA. These options operate the same as they do in the FOR XML RAW clause.

FOR XML PATH

The FOR XML PATH clause is a new feature of SQL Server 2005. It provides an easier way to

generate results similar to the FOR XML EXPLICIT clause. Like FOR XML EXPLICIT you have to

define the structure of the resultant XML, but unlike FOR XML EXPLICIT, FOR XML PATH allows

you to use a subset of the well-documented and much more intuitive XPath syntax to

define that structure. The following is the format of FOR XML PATH:

FOR XML PATH [ ( 'element_name' ) ] [ , BINARY BASE64 ] [ , TYPE ]

[ , ROOT [ ( 'root_name' ) ] ]

[ , ELEMENTS [ XSNIL | ABSENT ] ]

With the FOR XML PATH clause, column names are used to name the data as with FOR

XML EXPLICIT. Any columns that do not have names are inlined. This is useful if you want

to include an xml data type column in your result. In keeping with the XML standard, col-

umn names in the SELECT statement with a FOR XML PATH clause are case-sensitive. A

column named Name is different from a column named NAME. The other rules for column

names are the following:

• If a column name begins with an at sign (@) and does not contain a slash mark (/),

the value of the column is mapped as an attribute of the element_name element for

each corresponding row.

• If a column name does not start with an at sign (@) and does not contain a slash

mark (/), the value of the column is mapped as a subelement of the element_name

element for each row.

• If a column name does not start with an at sign (@) and contains one or more

slash marks (/), the item is mapped as a subelement in a hierarchy below the

element_name element for each row. What this means is if a column name such as

Product/ID is used, and element_name is the default value row, the value of that ele-

ment will be mapped in a hierarchy like this:

CHAPTER 11 ■ XML 233

794Xch11final.qxd  3/29/07  4:29 PM  Page 233



<row>

<Product>

<ID>value</ID>

</Product>

</row>

• If multiple columns have the same prefix, they will be grouped together as ele-

ments under the same subelement. For instance, if there are three columns named

Product/ID, Product/Price, and Product/Name, and element_name is the default value

row, the resulting hierarchy might look like this:

<row>

<Product>

<ID>value</ID>

<Price>value</Price>

<Name>value</Name>

</Product>

</row>

However, if a column with a different prefix appears between the columns with the

same prefix, it breaks the grouping. SQL Server will generate multiple subelements

with the same name. As an example, if there were four columns named Product/ID,

Product/Price, Quantity, and Product/Name in that order, the resulting hierarchy

might look like this:

<row>

<Product>

<ID>value</ID>

<Price>value</Price>

</Product>

<Quantity>value</Quantity>

<Product>

<Name>value</Name>

</Product>

</row>

• If the wildcard character (*) or the name node() is used as a column name, the

value of the column is inserted inline under the element_name element. If the col-

umn is a non-xml data type, it is inserted as a text value. When a value is inserted

inline, or inlined, its value is inserted directly as a text node, except for XML itself,

which is inserted in the current position as XML.

CHAPTER 11 ■ XML234

794Xch11final.qxd  3/29/07  4:29 PM  Page 234



Additionally, you can use certain XPath node tests as column names. Table 11-1 is a

summary of column naming conventions, including XPath node tests.

Table 11-1. FOR XML PATH Column Naming Conventions

Column Name Result

text() The string value of the column is added as a text node.

comment() The string value of the column is added as an XML comment.

node() The string value of the column is inserted inline under the
element_name element.

* This is the same as node().

data() The string value of the column is inserted as an atomic value.
Spaces are inserted between atomic values in the resulting XML.

processing-instruction(name) The string value of the column is inserted as an XML processing
instruction named name.

@name The string value of the column is inserted as an attribute of the
element_name element.

name The string value of the column is inserted as a subelement of the
element_name element.

elem/name The string value of the column is inserted as a subelement of the
specified element hierarchy, under element_name.

elem/@name The string value of the column is inserted as an attribute of the
last element in specified hierarchy, under element_name.

Listing 11-6 demonstrates the use of the FOR XML PATH clause in a SELECT statement.

Listing 11-6. FOR XML PATH Clause Example

SELECT p.ProductID AS "Product/@ID",

p.Name AS "Product/Name",

p.ProductNumber AS "Product/Number",

i.Quantity AS "Product/Quantity"

FROM Production.Product p

INNER JOIN Production.ProductInventory i

ON p.ProductID = i.ProductID

WHERE p.ProductID = 770

FOR XML PATH;

CHAPTER 11 ■ XML 235

794Xch11final.qxd  3/29/07  4:29 PM  Page 235



The result of this sample FOR XML PATH query looks like this:

<row>

<Product ID="770">

<Name>Road-650 Black, 52</Name>

<Number>BK-R50B-52</Number>

<Quantity>104</Quantity>

</Product>

</row>

<row>

<Product ID="770">

<Name>Road-650 Black, 52</Name>

<Number>BK-R50B-52</Number>

<Quantity>123</Quantity>

</Product>

</row>

The additional FOR XML PATH options operate the same as they do for the FOR XML AUTO

clause.

OPENXML

OPENXML is a legacy XML function that provides a rowset view of XML data. It is techni-

cally a rowset provider, which means its contents can be queried and accessed like a

table. The legacy SQL Server XML functionality requires the sp_xml_preparedocument

and sp_xml_removedocument system stored procedures to parse text into an XML docu-

ment and to clean up afterward. These procedures are used in conjunction with the

OPENXML function to move XML data from its textual representation into a parsed XML

document, and from there to a database table.

This method is rather clunky compared to the newer methods introduced by SQL

Server 2005, but you might need it if you’re writing code that needs to work on both 

SQL Server 2000 as well as 2005. The first step in using OPENXML is to use the

sp_xml_preparedocument stored procedure to convert an XML-formatted string into an

XML document. The following is the format for sp_xml_preparedocument:

sp_xml_preparedocument hdoc OUTPUT [ , xmltext ] [ , xpath_namespaces ]

CHAPTER 11 ■ XML236

794Xch11final.qxd  3/29/07  4:29 PM  Page 236



• The hdoc parameter is an int OUTPUT parameter that contains a handle to the XML

document created by the stored procedure.

• The xmltext parameter is the original XML document in string format. It can be a

char, nchar, varchar, nvarchar, text, ntext, or xml data type. If NULL is passed in, or

xmltext is omitted, an empty XML document is created. The default for this param-

eter is NULL.

• The xpath_namespaces parameter specifies the namespace declarations used in

XPath expressions in OPENXML. Like xmltext, the xpath_namespaces parameter can

be a char, nchar, varchar, nvarchar, text, ntext, or xml data type. The default

xpath_namespaces value is <root xmlns:mp="urn:schemas-microsoft-com:➥

xml-metaprop">.

The sp_xml_preparedocument procedure invokes the MSXML parser to parse your XML

document into an internal tree representation of the nodes. The resulting document is

cached and will continue to take up SQL Server memory until it is explicitly removed with

the sp_xml_removedocument procedure. The following is the format for sp_xml_removedocument:

sp_xml_removedocument hdoc

The sp_xml_removedocument procedure only takes one parameter. The hdoc parameter

is the int handle previously returned by the sp_xml_preparedocument procedure.

The final piece of the puzzle is the OPENXML rowset provider itself. Because it is a

rowset provider, OPENXML can be queried like a table or view. The following is the format

for OPENXML:

OPENXML(hdoc, rowpattern [ , flags ])

[ WITH ( SchemaDeclaration | TableName ) ]

OPENXML takes up to three parameters:

• The hdoc parameter is the integer XML document handle returned by the

sp_xml_preparedocument procedure.

• The rowpattern is an nvarchar XPath query pattern that determines which nodes

of the XML document are returned as rows.

• The optional flags parameter is a tinyint value that specifies the type of mapping

to be used between the XML data and the relational rowset. If specified, flags can

be a combination of the values listed in Table 11-2.

CHAPTER 11 ■ XML 237

794Xch11final.qxd  3/29/07  4:29 PM  Page 237



Table 11-2. OPENXML Flags Parameter Options

Value Name Description

0 DEFAULT A flags value of 0 tells OPENXML to default to attribute-
centric mapping.

1 XML_ATTRIBUTES A flags value of 1 indicates that OPENXML should use
attribute-centric mapping.

2 XML_ELEMENTS A flags value of 2 indicates that OPENXML should use
element-centric mapping.

3 XML_ATTRIBUTES | XML_ELEMENTS Combining XML_ATTRIBUTES with XML_ELEMENTS (logical
OR) indicates that attribute-centric mapping should
be applied first, and element-centric mapping should
be applied to all columns not yet dealt with.

8 The flags value of 8 indicates that the consumed data
should not be copied to the overflow property
@mp:xmltext. This value can be combined (logical OR)
with flags 1, 2, or 3.

The optional WITH clause of OPENXML provides a format for the returned rowset. The

WITH clause can specify a SchemaDeclaration or an existing TableName. If the WITH clause isn’t

specified, the results are returned in edge table format. According to Microsoft SQL Server

2005 BOL, “Edge tables represent the fine-grained document structure . . . in a single

table” (http://msdn2.microsoft.com/en-us/library/ms186918.aspx). Basically an edge table

is Microsoft’s default format for representing XML data that has been shredded, or con-

verted to relational format. The format for edge tables is given in Table 11-3.

Table 11-3. Edge Table Format

Column Name Data Type Description

id bigint The unique ID of the document node. The root element ID is 0.

parentid bigint The identifier of the parent of the node. If the node is a top-level
node, the parentid is NULL.

nodetype int The column that indicates the type of the node. It can be 1 for an
element node, 2 for an attribute node, or 3 for a text node.

localname nvarchar The local name of the element or attribute, or NULL if the DOM
object does not have a name.

prefix nvarchar The namespace prefix of the node.

namespaceuri nvarchar The namespace URI of the node, or NULL if no namespace.

datatype nvarchar The data type of the element or attribute row, which is inferred
from the inline DTD or the inline schema.

prev bigint The XML ID of the previous sibling element, or NULL if there is no
direct previous sibling.

text ntext The attribute value or element content.

CHAPTER 11 ■ XML238

794Xch11final.qxd  3/29/07  4:29 PM  Page 238



The sample query in Listing 11-7 pulls this together with a simple demonstration of

OPENXML without the WITH clause.

Listing 11-7. Sample OPENXML Query; No WITH Clause

DECLARE @docHandle INT;

DECLARE @xmlDocument NVARCHAR(MAX);

SELECT @xmlDocument =

N'<Customers>

<Customer CustomerID="1234" ContactName="Larry" CompanyName="APress">

<Orders>

<Order OrderDate="2006-04-25T13:22:18"/>

<Order OrderDate="2006-05-10T12:35:49"/>

</Orders>

</Customer>

<Customer CustomerID="4567" ContactName="Bill" CompanyName="Microsoft">

<Orders>

<Order OrderDate="2006-03-12T18:32:39"/>

<Order OrderDate="2006-05-11T17:56:12"/>

</Orders>

</Customer>

</Customers>';

EXECUTE sp_xml_preparedocument @docHandle OUTPUT, @xmlDocument;

SELECT Id,

ParentId,

NodeType,

LocalName,

Prefix,

NameSpaceUri,

DataType,

Prev,

[Text]

FROM OPENXML(@docHandle, N'/Customers/Customer');

EXECUTE sp_xml_removedocument @docHandle;

GO

CHAPTER 11 ■ XML 239

794Xch11final.qxd  3/29/07  4:29 PM  Page 239



Listing 11-7 begins by declaring an int variable to hold the XML document handle

and an nvarchar(max) variable to hold the string representation of the XML document to

be parsed:

DECLARE @docHandle INT;

DECLARE @xmlDocument NVARCHAR(MAX);

SELECT @xmlDocument =

N'<Customers>

<Customer CustomerID="1234" ContactName="Larry" CompanyName="APress">

<Orders>

<Order OrderDate="2006-04-25T13:22:18"/>

<Order OrderDate="2006-05-10T12:35:49"/>

</Orders>

</Customer>

<Customer CustomerID="4567" ContactName="Bill" CompanyName="Microsoft">

<Orders>

<Order OrderDate="2006-03-12T18:32:39"/>

<Order OrderDate="2006-05-11T17:56:12"/>

</Orders>

</Customer>

</Customers>';

Next the code calls sp_xml_preparedocument to parse the XML text and cache it in

memory as an XML node tree structure:

EXECUTE sp_xml_preparedocument @docHandle OUTPUT, @xmlDocument

Then the code uses OPENXML to SELECT all of the nodes that match the XPath expres-

sion pattern /Customers/Customer:

SELECT Id,

ParentId,

NodeType,

LocalName,

Prefix,

NameSpaceUri,

DataType,

Prev,

[Text]

FROM OPENXML(@docHandle, N'/Customers/Customer');

CHAPTER 11 ■ XML240

794Xch11final.qxd  3/29/07  4:29 PM  Page 240



Finally it calls sp_xml_removedocument with the document handle previously generated

to get rid of the in-memory XML document:

EXECUTE sp_xml_removedocument @docHandle;

GO

■Caution Always call sp_xml_removedocument to free memory used by XML documents created with
sp_xml_createdocument. Any XML documents created with sp_xml_createdocument remain in memory
until sp_xml_removedocument is called or the SQL Server service is restarted.

The OPENXML query returns the results in edge table format, as shown in Figure 11-1.

By adding a WITH clause to the OPENXML query in Listing 11-7, you can specify an

explicit schema for the resulting rowset. This technique is demonstrated in Listing 11-8.

The differences between Listings 11-8 and 11-7 are shown in bold.

Listing 11-8. OPENXML and WITH Clause, Explicit Schema

DECLARE @docHandle INT;

DECLARE @xmlDocument NVARCHAR(MAX);

SET @xmlDocument =

N'<Customers>

<Customer CustomerID="1234" ContactName="Larry" CompanyName="APress">

CHAPTER 11 ■ XML 241

Figure 11-1. Results of the OPENXML query in Listing 11-7

794Xch11final.qxd  3/29/07  4:29 PM  Page 241



<Orders>

<Order OrderDate="2006-04-25T13:22:18"/>

<Order OrderDate="2006-05-10T12:35:49"/>

</Orders>

</Customer>

<Customer CustomerID="4567" ContactName="Bill" CompanyName="Microsoft">

<Orders>

<Order OrderDate="2006-03-12T18:32:39"/>

<Order OrderDate="2006-05-11T17:56:12"/>

</Orders>

</Customer>

</Customers>';

EXECUTE sp_xml_preparedocument @docHandle OUTPUT, @xmlDocument;

SELECT CustomerID,

CustomerName,

CompanyName,

OrderDate

FROM OPENXML(@docHandle, N'/Customers/Customer/Orders/Order')

WITH (CustomerID NCHAR(4) N'../../@CustomerID',

CustomerName NVARCHAR(50) N'../../@ContactName',

CompanyName NVARCHAR(50) N'../../@CompanyName',

OrderDate DATETIME);

EXECUTE sp_xml_removedocument @docHandle;

GO

Figure 11-2 shows the result of this OPENXML query.

CHAPTER 11 ■ XML242

Figure 11-2. Results of OPENXML with explicit schema declaration

794Xch11final.qxd  3/29/07  4:29 PM  Page 242



The OPENXML WITH clause can also use the schema from an existing table to format the

relational result set. This is demonstrated in Listing 11-9. The differences between Listing

11-9 and 11-8 are shown in bold text.

Listing 11-9. OPENXML with WITH Clause, Existing Table Schema

DECLARE @docHandle INT;

DECLARE @xmlDocument NVARCHAR(MAX);

SET @xmlDocument =

N'<Customers>

<Customer CustomerID="1234" ContactName="Larry" CompanyName="APress">

<Orders>

<Order OrderDate="2006-04-25T13:22:18"/>

<Order OrderDate="2006-05-10T12:35:49"/>

</Orders>

</Customer>

<Customer CustomerID="4567" ContactName="Bill" CompanyName="Microsoft">

<Orders>

<Order OrderDate="2006-03-12T18:32:39"/>

<Order OrderDate="2006-05-11T17:56:12"/>

</Orders>

</Customer>

</Customers>';

EXECUTE sp_xml_preparedocument @docHandle OUTPUT, @xmlDocument;

CREATE TABLE #OrderInfo (CustomerID NCHAR(4) NOT NULL,

CustomerName NVARCHAR(50) NOT NULL,

CompanyName NVARCHAR(50) NOT NULL,

OrderDate NVARCHAR(50) NOT NULL,

PRIMARY KEY(CustomerID, CustomerName, CompanyName, OrderDate));

INSERT INTO #OrderInfo (CustomerID, CustomerName, CompanyName, OrderDate)

SELECT CustomerID,

CustomerName,

CompanyName,

OrderDate

CHAPTER 11 ■ XML 243

794Xch11final.qxd  3/29/07  4:29 PM  Page 243



FROM OPENXML(@docHandle, N'/Customers/Customer/Orders/Order')

WITH (CustomerID NCHAR(4) N'../../@CustomerID',

CustomerName NVARCHAR(50) N'../../@ContactName',

CompanyName NVARCHAR(50) N'../../@CompanyName',

OrderDate DATETIME);

SELECT CustomerID,

CustomerName,

CompanyName,

OrderDate

FROM #OrderInfo;

DROP TABLE #OrderInfo;

EXECUTE sp_xml_removedocument @docHandle;

GO

Figure 11-3 shows the results of the sample OPENXML query using an existing table to

format the results.

The xml Data Type
SQL Server’s legacy XML functionality can be a bit cumbersome and somewhat clunky

to use at times. Fortunately, SQL Server 2005 includes much tighter XML integration

with its new xml data type. The xml data type can be used to declare variables or

columns of a table. T-SQL xml variables and columns have built-in methods that allow

you to query and modify nodes, and they can be associated with XML schemas to cre-

ate typed xml instances. This section discusses both typed and untyped xml instances

in T-SQL.

The T-SQL xml data type can hold complete XML documents or XML fragments. An

XML document has to have a top-level root element, while an XML fragment does not.

CHAPTER 11 ■ XML244

Figure 11-3. Sample OPENXML query using an existing table to format results

794Xch11final.qxd  3/29/07  4:29 PM  Page 244



The stored internal representation of an XML document or fragment stored in an xml

variable or column maxes out at 2GB of storage. The xml type can be used anywhere other

types are used, including

• The return type of a function

• The parameter type for functions and stored procedures

• Variable declarations

• Column declarations

• CAST and CONVERT functions

Untyped xml

Untyped xml variables and columns are created by following them with the keyword xml

in the declaration, as shown in Listing 11-10.

Listing 11-10. Untyped xml Variable and Column Declarations

DECLARE @x XML;

CREATE TABLE XmlPurchaseOrders(PoNum INT NOT NULL PRIMARY KEY,

XmlPO XML);

Populating an xml variable or column with an XML document or fragment requires 

a simple assignment statement. Char, varchar, nchar, nvarchar, varbinary, text, and ntext

data can be implicitly or explicitly converted to xml. Some rules apply when converting

from one of these types to xml:

• The XML parser treats nvarchar, nchar, and ntext data as a two-byte Unicode-

encoded XML document or fragment.

• Char, varchar, and text data are treated as a single-byte-encoded XML document

or fragment. The code page of the source string, variable, or column is used for

encoding by default.

• The content of varbinary data is passed directly to the XML parser, which

accepts it as a stream. If the varbinary XML data is Unicode-encoded, the byte-

order mark/encoding information must be included in the varbinary data. If 

no byte-order mark/encoding information is included, the default of UTF-8 

is used.

CHAPTER 11 ■ XML 245

794Xch11final.qxd  3/29/07  4:29 PM  Page 245



■Note The binary data type can also be implicitly or explicitly converted to xml, but it must be the exact
length of the data it contains. The extra padding applied to binary variables and columns when the data
they contain is too short can cause errors in the XML parsing process. Use the varbinary data type when
you need to convert binary data to XML.

Listing 11-11 demonstrates implicit conversion from nvarchar to the xml data type.

The CAST function can be used to make the conversion explicit.

Listing 11-11. Populating an Untyped xml Variable

DECLARE @x XML;

SELECT @x =   N'<?xml version="1.0" ?>

<Address>

<Latitude>47.642737</Latitude>

<Longitude>-122.130395</Longitude>

<Street>ONE MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

</Address>';

SELECT @x;

Typed xml

To create a typed xml variable or column in SQL Server 2005, you must first create an XML

schema collection with the CREATE XML SCHEMA COLLECTION statement, which looks like the

following:

CREATE XML SCHEMA COLLECTION [ schema_name. ] xml_schema_name

AS xml_schema

• Schema_name is the name of the SQL Server schema to create the XML schema in.

• Xml_schema_name is the name SQL Server will use to reference the XML schema

collection.

• Xml_schema is the XML schema. The xml_schema can be a char, varchar, nchar,

nvarchar, varbinary, or xml constant or variable.

CHAPTER 11 ■ XML246

794Xch11final.qxd  3/29/07  4:29 PM  Page 246



You can alter or drop an XML schema collection as well. The ALTER XML SCHEMA

COLLECTION allows you to add schema components to a specified schema collection. 

The format is the following:

ALTER XML SCHEMA COLLECTION [ schema_name. ] xml_schema_name

ADD schema_component

Like the CREATE statement, schema_name is the SQL Server schema and xml_schema_name

is the name SQL Server uses to reference the XML schema collection. Schema_component is

the schema component to insert into the XML schema collection.

The format of the DROP statement, to remove an XML schema collection from the

server, is the following:

DROP XML SCHEMA COLLECTION [ schema_name. ] xml_schema_name

The DOCUMENT and CONTENT keywords represent facets that you can use to constrain

typed xml instances. Using the DOCUMENT facet in your typed xml variable or column decla-

rations constrains your typed XML data so that it must contain only one top-level root

element. The CONTENT facet allows zero or more top-level elements. CONTENT is the default

if neither is specified explicitly.

Listing 11-12 demonstrates how to turn the untyped xml variable from Listing 11-11

into a typed XML xml instance. The differences between this listing and the previous one

are in bold text.

Listing 11-12. Creating a Typed xml Variable

CREATE XML SCHEMA COLLECTION AddressSchemaCollection

AS N'<?xml version="1.0" encoding="utf-16" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Latitude" type="xsd:decimal" />

<xsd:element name="Longitude" type="xsd:decimal" />

<xsd:element name="Street" type="xsd:string" />

<xsd:element name="City" type="xsd:string" />

<xsd:element name="State" type="xsd:string" />

<xsd:element name="Zip" type="xsd:string" />

<xsd:element name="Country" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>';

GO

CHAPTER 11 ■ XML 247

794Xch11final.qxd  3/29/07  4:29 PM  Page 247



DECLARE @x XML (CONTENT AddressSchemaCollection);

SELECT @x = N'<?xml version="1.0" ?>

<Address>

<Latitude>47.642737</Latitude>

<Longitude>-122.130395</Longitude>

<Street>ONE MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

</Address>';

SELECT @x;

DROP XML SCHEMA COLLECTION AddressSchemaCollection;

GO

The first step in creating a typed xml instance is to create an XML schema collection:

CREATE XML SCHEMA COLLECTION AddressSchemaCollection

AS N'<?xml version="1.0" encoding="utf-16" ?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="Address">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Latitude" type="xsd:decimal" />

<xsd:element name="Longitude" type="xsd:decimal" />

<xsd:element name="Street" type="xsd:string" />

<xsd:element name="City" type="xsd:string" />

<xsd:element name="State" type="xsd:string" />

<xsd:element name="Zip" type="xsd:string" />

<xsd:element name="Country" type="xsd:string" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>';

GO

CHAPTER 11 ■ XML248

794Xch11final.qxd  3/29/07  4:29 PM  Page 248



■Tip The World Wide Web Consortium (W3C) maintains the standards for XML schemas. The XML Schema
recommendations are available at http://www.w3.org/TR/xmlschema-1/ and http://www.w3.org/
TR/xmlschema-2/. These W3C recommendations are excellent starting points for creating your own XML
schemas.

The next step is to declare the variable as xml type, but with an XML schema collec-

tion specification included:

DECLARE @x XML (CONTENT AddressSchemaCollection);

The XML data, conforming to the schema in the XML schema collection, is assigned

to the xml variable:

SELECT @x =   N'<?xml version="1.0" ?>

<Address>

<Latitude>47.642737</Latitude>

<Longitude>-122.130395</Longitude>

<Street>ONE MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

</Address>';

Finally, to prove that you just populated a typed xml variable, SELECT it. DROP the xml

schema collection to clean up:

SELECT @x;

DROP XML SCHEMA COLLECTION AddressSchemaCollection;

GO

xml Data Type Methods
The xml data type has several methods for querying and modifying xml data. The built-in

methods are shown in Table 11-4.

CHAPTER 11 ■ XML 249

794Xch11final.qxd  3/29/07  4:29 PM  Page 249



Table 11-4. xml Data Type Methods

Method Result

query(XQuery) Performs an XQuery query against an xml
instance. Returns the result as an untyped xml
instance.

value(XQuery, Sql_Type) Performs an XQuery against an xml instance and
returns a scalar value of the specified Sql_Type.

exist(XQuery) Performs an XQuery against an xml instance and
returns one of the following bit values:
• 1 if the XQuery expression returns a nonempty
result
• 0 if the XQuery expression returns an empty
result
• NULL if the xml instance is NULL

modify(XML_DML) Performs an XML_DML statement to modify an xml
instance.

nodes(XQuery) as table_name(column_name) Performs an XQuery against an xml instance and
returns matching nodes as a SQL result set.
Table_name and column_name specify the name of
a virtual table to hold the nodes returned.

This section discusses each of the xml data type methods in turn. Code samples pre-

sented in this section use the AdventureWorks database.

The query() Method

The xml data type query() method accepts an XQuery string as its only parameter. This

method returns all nodes matching the XQuery as an untyped xml instance. Conveniently

enough, Microsoft was kind enough to provide us with sample typed xml data in the Resume

column of the HumanResources.JobCandidate table. Though all of its xml is well-formed with

a single root element, the Resume column is faceted with the default of CONTENT.

Listing 11-13 shows how to use the query() method to retrieve names from the

resumes in the HumanResources.JobCandidate table.

Listing 11-13. Using the query() Method on the HumanResources.JobCandidate Resume XML

SELECT Resume.query(N'declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

/ns:Resume/ns:Name') AS [NameXML]

FROM HumanResources.JobCandidate;

CHAPTER 11 ■ XML250

794Xch11final.qxd  3/29/07  4:29 PM  Page 250



The first thing to notice is that a namespace is declared inside the XQuery. This is

done because the Resume column xml data declares a namespace. In fact, the namespace

declaration used in the XQuery is exactly the same as the declaration used in the xml data.

The declaration section of the XQuery looks like this:

declare namespace ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume";

The actual query portions of both XQuery strings are small by comparison:

/ns:Resume/ns:Name

A sample of the results of the code in Listing 11-13 looks like the following (reformat-

ted for easy reading):

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>Mr.</ns:Name.Prefix>

<ns:Name.First>Stephen</ns:Name.First>

<ns:Name.Middle>Y </ns:Name.Middle>

<ns:Name.Last>Jiang</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>M.</ns:Name.Prefix>

<ns:Name.First>Thierry</ns:Name.First>

<ns:Name.Middle />

<ns:Name.Last>D'Hers</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>M.</ns:Name.Prefix>

<ns:Name.First>Christian</ns:Name.First>

<ns:Name.Middle />

<ns:Name.Last>Kleinerman</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

CHAPTER 11 ■ XML 251

794Xch11final.qxd  3/29/07  4:29 PM  Page 251



■Tip SQL Server 2005 implements a subset of the W3C XQuery standard. Chapter 12 discusses SQL
Server’s XPath and XQuery implementations in detail. If you’re just getting started with XQuery, additional
resources include the W3C standard, available at http://www.w3.org/TR/2004/WD-xquery-20040723/,
and BOL at http://msdn2.microsoft.com/en-us/library/ms189919.aspx.

The value() Method

The xml data type value() method performs an XQuery against an xml object and returns

a scalar result. The scalar result of value() is cast to the T-SQL data type specified in the

call to value(). The sample code in Listing 11-14 uses the value() method to retrieve all

last names from the job applicant resumes.

Listing 11-14. xml Data Type value() Method Sample

SELECT Resume.value (N'declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

(/ns:Resume/ns:Name/ns:Name.Last)[1]', 'nvarchar(max)') AS [LastName]

FROM HumanResources.JobCandidate;

Like the query() method described previously, the value() method sample XQuery

begins by declaring a namespace:

declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

The actual query portion of the XQuery looks like this:

(/ns:Resume/ns:Name/ns:Name.Last)[1]

Because value() returns a scalar value, the query is enclosed in parentheses with [1]

following it to force the return of a singleton value. The second parameter to value() is

the T-SQL data type that value() will cast the result to, in this case nvarchar(max). Value()

cannot cast the result to a SQLCLR user-defined type, xml, image, text, ntext, or

sql_variant data type. The results of the query in Listing 11-14 are shown in Figure 11-4.

CHAPTER 11 ■ XML252

794Xch11final.qxd  3/29/07  4:29 PM  Page 252



The exist() Method

The xml data type exist() method is useful for determining if a node exists or if an exist-

ing node value meets a specific criteria. The example in Listing 11-15 uses the exist()

method in a SELECT query to return all job candidates with a bachelor’s degree level of

education.

Listing 11-15. xml Data Type exist() Method Example

SELECT Resume.query (N'declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

/ns:Resume/ns:Name') AS [NameXML]

FROM HumanResources.JobCandidate

WHERE Resume.exist (N'declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

/ns:Resume/ns:Education/ns:Edu.Level [.="Bachelor"]') = 1;

The first part of the query borrows from the query() method example in Listing 11-13

to retrieve matching job candidate names:

SELECT Resume.query (N'declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

/ns:Resume/ns:Name') AS [NameXML]

FROM HumanResources.JobCandidate

CHAPTER 11 ■ XML 253

Figure 11-4. Result of xml data type value() method sample

794Xch11final.qxd  3/29/07  4:29 PM  Page 253



The exist() method in the WHERE clause determines the xml match criteria. Like the

previous sample queries, the XQuery query in Listing 11-15 begins by declaring a

namespace:

declare namespace

ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume";

The query itself compares the Edu.Level node text to the string Bachelor:

/ns:Resume/ns:Education/ns:Edu.Level [.="Bachelor"]'

If there is a match, the query returns a result and the exist() method returns 1. If

there is no match there will be no result returned by the XQuery and the exist() method

will return 0. If the xml is NULL, exist() will return NULL. The query limits the results to only

matching resumes by returning only those where exist() returns 1.

The sample query returns four job candidates whose education credentials match

the criteria, as shown here (formatted for easier reading):

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix />

<ns:Name.First>Shai</ns:Name.First>

<ns:Name.Middle />

<ns:Name.Last>Bassli</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>Mr.</ns:Name.Prefix>

<ns:Name.First>Max</ns:Name.First>

<ns:Name.Middle />

<ns:Name.Last>Benson</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

CHAPTER 11 ■ XML254

794Xch11final.qxd  3/29/07  4:29 PM  Page 254



CHAPTER 11 ■ XML 255

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>Mr.</ns:Name.Prefix>

<ns:Name.First>Krishna</ns:Name.First>

<ns:Name.Middle />

<ns:Name.Last>Sunkammurali</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

<ns:Name xmlns:ns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/Resume">

<ns:Name.Prefix>Mr.</ns:Name.Prefix>

<ns:Name.First>Stephen</ns:Name.First>

<ns:Name.Middle>Y </ns:Name.Middle>

<ns:Name.Last>Jiang</ns:Name.Last>

<ns:Name.Suffix />

</ns:Name>

The nodes() Method

The nodes() method of the xml data type retrieves XML content in relational format. The

nodes() method returns a rowset with logical copies of the xml nodes returned by the

specified XQuery. Listing 11-16 retrieves product names and IDs for those that have

the word Alloy in the <Material> node of their CatalogDescription. The table queried is

Production.ProductModel. Notice that the CROSS APPLY operator is required to perform

the nodes() method on all rows of the Production.ProductModel table.

Listing 11-16. xml Data Type nodes() Example

SELECT ProductModelId, Name, Specs.query('.') AS Result

FROM Production.ProductModel

CROSS APPLY CatalogDescription.nodes( 'declare namespace

ns = "http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

/ns:ProductDescription/ns:Specifications/Material/text()[contains(.,"Alloy")]')

AS NodeTable(Specs);

794Xch11final.qxd  3/29/07  4:29 PM  Page 255



The first part of the SELECT query retrieves the product model ID and name and the

results of the nodes() method via the query() method:

SELECT ProductModelId, Name, Specs.query('.') AS Result

FROM Production.ProductModel

One restriction of the nodes() method is that the relational results generated cannot

be retrieved directly; they can only be accessed via the exist(), nodes(), query(), and

value() xml data type methods, or with the IS NULL and IS NOT NULL operators.

The nodes() method is cross-applied to generate the final result set. The XQuery 

used begins by declaring a namespace:

declare namespace ns = "http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription";

The query portion retrieves xml items in which the <Material> node text contains the

word Alloy:

/ns:ProductDescription/ns:Specifications/Material/text()[contains(.,"Alloy")]

The results generated by this query look like Table 11-5.

Table 11-5. xml Data Type nodes() Method Results

ProductModelId Name Result

19 Mountain-100 Aluminum Alloy

23 Mountain-500 Aluminum Alloy

28 Road-450 Aluminum Alloy

The modify() Method

The xml data type modify() method can be used to modify the content of an xml variable

or column. The modify() method allows you to insert, delete, or update xml content. The

main restriction on the modify() method is that it must be used in a variable SET state-

ment or in the SET clause of an UPDATE statement. The example in Listing 11-17 demon-

strates the modify() method on an untyped xml variable.

CHAPTER 11 ■ XML256

794Xch11final.qxd  3/29/07  4:29 PM  Page 256



■Tip Although the SELECT and SET statements are similar in their functionality when applied to vari-
ables, the modify() method of the xml data type will not work in SELECT statements—even SELECT
statements that assign values to variables. Use the SET statement as demonstrated in Listing 11-17 to
use the modify() method on an xml variable.

Listing 11-17. xml Data Type modify() Method Example

DECLARE @x XML;

SELECT @x = N'<?xml version="1.0" ?>

<Address>

<Street>1 MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

<Website>http://www.microsoft.com</Website>

</Address>';

SELECT @x;

SET @x.modify ('insert (

<CompanyName>Microsoft Corporation</CompanyName>,

<Url>http://msdn.microsoft.com</Url>,

<UrlDescription>Microsoft Developer&apos;s Network</UrlDescription>

)

into (/Address)[1] ');

SET @x.modify(' replace value of (/Address/Street/text())[1]

with "ONE MICROSOFT WAY"

');

SET @x.modify('

delete /Address/Website

');

SELECT @x;

CHAPTER 11 ■ XML 257

794Xch11final.qxd  3/29/07  4:29 PM  Page 257



The sample begins by creating an xml variable and assigning XML content to it:

DECLARE @x XML;

SELECT @x = N'<?xml version="1.0" ?>

<Address>

<Street>1 MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

<Website>http://www.microsoft.com</Website>

</Address>';

SELECT @x;

The modify() method insert statement inserts three new nodes into the xml variable,

right below the top-level <Address> node:

SET @x.modify ('insert (

<CompanyName>Microsoft Corporation</CompanyName>,

<Url>http://msdn.microsoft.com</Url>,

<UrlDescription>Microsoft Developer&apos;s Network</UrlDescription>

)

into (/Address)[1] ');

The replace value of statement specified in the next modify() method updates the

content of the <Street> node with the street address our good friends at Microsoft prefer:

ONE MICROSOFT WAY instead of 1 MICROSOFT WAY.

SET @x.modify(' replace value of (/Address/Street/text())[1]

with "ONE MICROSOFT WAY"

');

Finally the modify() method delete statement is used to remove the old <Website> tag

from the xml variable’s content:

SET @x.modify('

delete /Address/Website

');

SELECT @x;

CHAPTER 11 ■ XML258

794Xch11final.qxd  3/29/07  4:29 PM  Page 258



The results of this example look like this (formatted for easier reading):

Before:

<Address>

<Street>1 MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

<Website>http://www.microsoft.com</Website>

</Address>

After:

<Address>

<Street>ONE MICROSOFT WAY</Street>

<City>REDMOND</City>

<State>WA</State>

<Zip>98052</Zip>

<Country>US</Country>

<CompanyName>Microsoft Corporation</CompanyName>

<Url>http://msdn.microsoft.com</Url>

<UrlDescription>Microsoft Developer's Network</UrlDescription>

</Address>

XML Indexes
SQL Server provides XML indexes to increase the efficiency of querying and manipula-

tion of xml data type columns. The process of converting XML data to relational format

is known as shredding. XML indexes are preshredded representations of SQL Server xml

data. SQL Server provides two forms of XML indexes:

• Primary XML index: An XML column can have a single primary XML index

declared on it. In order to create a primary XML index on a table’s xml column,

a clustered index must be in place on a primary key column for the table.

• Secondary XML index: Secondary XML indexes can also be created on a table’s

xml column. The three types of secondary XML indexes are the following:

CHAPTER 11 ■ XML 259

794Xch11final.qxd  3/29/07  4:29 PM  Page 259



• PATH: Optimizes the secondary XML index for XPath and XQuery path expres-

sions by creating an index on path and node values built on the columns of

the primary XML index. The path and node values are used as key columns

for efficient path seek operations.

• VALUE: Optimizes the secondary XML index for queries by value. This type of

index is based on the node values and paths of the primary XML index.

• PROPERTY: Optimizes the secondary XML index for queries that retrieve data

from the table based on the value of nodes or paths in the xml column. This

type of secondary index is created on the primary key of the base table,

node paths, and node values of the primary XML index.

In order to create secondary XML indexes on an xml column, a primary XML index

must already exist on that column.

Consider the example XQuery FLWOR expression in Listing 11-18 that retrieves the

last, first, and middle names of all job applicants in the HumanResources.JobCandidate

table with an education level of Bachelor.

■Tip XQuery FLWOR expressions like this one are described in greater detail in Chapter 12.

Listing 11-18. Retrieving Job Candidates with Bachelor’s Degrees

SELECT Resume.query('declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume";

for $m in /ns:Resume

where $m/ns:Education/ns:Edu.Level[. = "Bachelor" ]

return <Name>

{

data(($m/ns:Name/ns:Name.Last)[1]),

data(($m/ns:Name/ns:Name.First)[1]),

data(($m/ns:Name/ns:Name.Middle)[1])

}

</Name>')

FROM HumanResources.JobCandidate;

GO

CHAPTER 11 ■ XML260

794Xch11final.qxd  3/29/07  4:29 PM  Page 260



The results of this query look like the following:

<Name>Bassli Shai </Name>

<Name>Benson Max </Name>

<Name>Sunkammurali Krishna </Name>

<Name>Jiang Stephen Y </Name>

The results, however, are not as important as what’s going on under the hood. This

XQuery query is returning the last, first, and middle names of all candidates for which the

Edu.Level node contains the value Bachelor. As shown in Figure 11-5, the execution cost

of this query is 27.7855.

By far the most expensive part of this query is the XML Reader with XPath Filter step,

with a cost of 13.052, as shown in Figure 11-6. Two of these steps occur in the query exe-

cution plan at a cost of 13.052 each, accounting for 94 percent of the total cost of the

query execution plan.

CHAPTER 11 ■ XML 261

Figure 11-5. Execution cost of query

Figure 11-6. XML Reader with XPath Filter step of the query plan

794Xch11final.qxd  3/29/07  4:29 PM  Page 261



Adding XML indexes to this column of the HumanResources.JobCandidate table will sig-

nificantly improve the query performance. Listing 11-19 demonstrates adding a primary

and secondary XML index to the Resume column.

Listing 11-19. Adding XML Indexes to the Resume Column

CREATE PRIMARY XML INDEX PXML_JobCandidate

ON HumanResources.JobCandidate (Resume);

GO

CREATE XML INDEX IXML_Education

ON HumanResources.JobCandidate (Resume)

USING XML INDEX PXML_JobCandidate

FOR PATH;

GO

With the primary and secondary XML indexes in place, the query execution cost

drops significantly from 27.7855 to 0.337566, as shown in Figure 11-7.

This greater efficiency is brought about by the XML Reader with XPath Filter step

being replaced with an efficient Clustered Index Seek step based on the new XML

indexes, as shown in Figure 11-8.

CHAPTER 11 ■ XML262

Figure 11-7. Query execution cost with XML indexes in place

794Xch11final.qxd  3/29/07  4:29 PM  Page 262



The CREATE PRIMARY XML INDEX statement in the example creates a primary XML index

on the Resume column of the HumanResources.JobCandidate table. This is a prerequisite for

creating the secondary XML index that will provide significant performance increase. The

following is the general format for the CREATE PRIMARY XML INDEX statement:

CREATE PRIMARY XML INDEX index_name

ON [ database_name. ][ schema_name. ] table_name ( xml_column_name )

[ WITH ( xml_index_option [ , ... n ] ) ] ;

The index_name is the name to assign to the primary XML index on creation.

Table_name specifies the name of the table to create the index on; it can be preceded by

the database_name and schema_name as well. The xml_column_name is the name of the xml

data type column on which the XML index will be created.

The optional WITH clause of this statement allows you to specify a variety of XML

index creation options:

• PAD_INDEX = { ON | OFF }: This option specifies index padding. The default is OFF.

• FILLFACTOR = fill_factor: The FILLFACTOR option indicates how full the leaf level

index pages should be made during index creation or rebuild. Values of 0 and 100

for fill_factor are equivalent. The FILLFACTOR option is used in conjunction with

the PAD_INDEX option.

• SORT_IN_TEMPDB = { ON | OFF }: The SORT_IN_TEMPDB option specifies that interme-

diate sort results are stored in TEMPDB. By default, SORT_IN_TEMPDB is set to OFF and

intermediate sort results are stored in the local database.

• STATISTICS_NORECOMPUTE = { ON | OFF }: The STATISTICS_NORECOMPUTE option deter-

mines whether distribution statistics are automatically recomputed. The default

is OFF.

CHAPTER 11 ■ XML 263

Figure 11-8. Efficient Clustered Index Seek step using the XML indexes

794Xch11final.qxd  3/29/07  4:29 PM  Page 263



• DROP_EXISTING = { ON | OFF }: This option specifies that the preexisting XML index

of the same name should be dropped before creating the index. The default is OFF.

• ALLOW_ROW_LOCKS = { ON | OFF }: This option allows SQL Server to use row locks

when accessing the XML index. The default is ON.

• ALLOW_PAGE_LOCKS = { ON | OFF }: This option allows SQL Server to use page locks

when accessing the XML index. The default is ON.

• MAXDOP = max_degree_parallelism: This option determines the maximum degree of

parallelism SQL Server can use during the index operation. Max_degree_parallelism

can be one of the following values:

• 0 (uses up to the maximum number of processors available)

• 1 (uses only one processor; no parallel processing)

• 2–64 (restricts the number of processors used for parallel processing to the

number specified or less)

The default MAXDOP value is 0. Parallel index operations are available only in the

Enterprise Edition of SQL Server 2005.

The secondary XML index is created with the CREATE XML INDEX statement, which has

the following format:

CREATE XML INDEX index_name

ON [ database_name. ][ schema_name. ] table_name ( xml_column_name )

USING XML INDEX primary_xml_index_name

FOR { VALUE | PATH | PROPERTY }

[ WITH ( xml_index_option [ , ... n ] ) ];

As with the CREATE PRIMARY XML INDEX statement, the index_name specifies the name

of the XML index. The table_name is the name of the table on which the XML index will

be created; it can be preceded by a schema_name and/or database_name. The

xml_column_name is the name of the xml data type column on which the XML index will

be built.

The USING XML INDEX clause specifies the name of the primary XML index to use in

building the secondary XML index. The FOR clause determines the type of secondary

XML index that will be created. This can be a VALUE, PATH, or PROPERTY type as described

previously. The optional WITH clause can be used to specify the same set of XML index

creation options that can be used with the CREATE PRIMARY XML INDEX option.

CHAPTER 11 ■ XML264

794Xch11final.qxd  3/29/07  4:29 PM  Page 264



XSL Transformations
As defined by the W3C, XSL Transformations (XSLT) is a language designed for the sole

purpose of “transforming XML documents into other XML documents.” The XSLT 1.0

standard is available at http://www.w3.org/TR/xslt. SQL Server 2005 provides access to

XSL Transformations via a combination of the built-in xml data type and the SQLCLR

XslCompiledTransform class.

XSLT can be used in SQL Server as a means of transforming your relational data

into an HTML page or other XML document, via the SELECT statement’s FOR XML clause.

Listing 11-20 demonstrates the first step in the process: using FOR XML to convert rela-

tional data to an xml variable data type instance.

Listing 11-20. Using FOR XML to Convert Relational Data to Populate an xml Variable

DECLARE @xml XML;

SELECT @xml = (

SELECT p.ProductNumber AS '@Id',

p.Name AS 'Name',

p.Color AS 'Color',

p.ListPrice AS 'ListPrice',

p.SizeUnitMeasureCode AS 'Size/@UOM',

p.Size AS 'Size',

p.WeightUnitMeasureCode AS 'Weight/@UOM',

p.Weight AS 'Weight',

(

SELECT COALESCE(SUM(i.Quantity), 0)

FROM Production.ProductInventory i

WHERE i.ProductID = p.ProductID

) AS 'QuantityOnHand'

FROM Production.Product p

WHERE FinishedGoodsFlag = 1

ORDER BY p.Name

FOR XML PATH ('Product'),

ROOT ('Products')

);

CHAPTER 11 ■ XML 265

794Xch11final.qxd  3/29/07  4:29 PM  Page 265



The resulting xml document looks like the following sample:

<Products>

...

<Product Id="FR-M94B-38">

<Name>HL Mountain Frame - Black, 38</Name>

<Color>Black</Color>

<ListPrice>1349.6000</ListPrice>

<Size UOM="CM ">38</Size>

<Weight UOM="LB ">2.68</Weight>

<QuantityOnHand>834</QuantityOnHand>

</Product>

<Product Id="FR-M94B-42">

<Name>HL Mountain Frame - Black, 42</Name>

<Color>Black</Color>

<ListPrice>1349.6000</ListPrice>

<Size UOM="CM ">42</Size>

<Weight UOM="LB ">2.72</Weight>

<QuantityOnHand>0</QuantityOnHand>

</Product>

...

</Products>

The next step is to create the XSLT style sheet to specify the transformation and

assign it to an xml data type variable. Listing 11-21 demonstrates a simple XSLT style

sheet to convert our XML data to XHTML.

Listing 11-21. XSLT Style Sheet to Convert Data to HTML

DECLARE @xslt XML;

SELECT @xslt = N'<?xml version="1.0" encoding="utf-16"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/Products">

<html>

<head>

<title>AdventureWorks Product Listing Report</title>

<style type="text/css">

CHAPTER 11 ■ XML266

794Xch11final.qxd  3/29/07  4:29 PM  Page 266



tr.row-heading {

background-color: 000099;

color: ffffff;

font-family: tahoma, arial, helvetica, sans-serif;

font-size: 12px;

}

tr.row-light {

background-color: ffffff;

font-family: tahoma, arial, helvetica, sans-serif;

font-size: 12px;

}

tr.row-dark {

background-color: 00ffff;

font-family: tahoma, arial, helvetica, sans-serif;

font-size: 12px;

}

td.col-right {

text-align: right;

}

</style>

</head>

<body>

<table>

<tr class="row-heading">

<th>ID</th>

<th>Product Name</th>

<th>On Hand</th>

<th>List Price</th>

<th>Color</th>

<th>Size</th>

<th>Weight</th>

</tr>

<xsl:for-each select="Product">

<xsl:element name="tr">

<xsl:choose>

<xsl:when test="position() mod 2 = 0">

<xsl:attribute name="class">row-light</xsl:attribute>

</xsl:when>

<xsl:otherwise>

<xsl:attribute name="class">row-dark</xsl:attribute>

</xsl:otherwise>

</xsl:choose>

CHAPTER 11 ■ XML 267

794Xch11final.qxd  3/29/07  4:29 PM  Page 267



<td><xsl:value-of select="@Id"/></td>

<td><xsl:value-of select="Name"/></td>

<td class="col-right">

<xsl:value-of select="QuantityOnHand"/>

</td>

<td class="col-right"><xsl:value-of select="ListPrice"/></td>

<td><xsl:value-of select="Color"/></td>

<td class="col-right">

<xsl:value-of select="Size"/>

<xsl:value-of select="Size/@UOM"/>

</td>

<td class="col-right">

<xsl:value-of select="Weight"/> 

<xsl:value-of select="Weight/@UOM"/>

</td>

</xsl:element>

</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>';

■Tip I won’t delve into the details of XSLT style sheet definitions in this book, but information can be
found at the official W3C XSLT 1.0 standard site: http://www.w3.org/TR/xslt. Also, the book Beginning
XSLT by Jeni Tennison (Apress, 2004) offers a detailed discussion of XSLT technology.

The final step is to create a .NET SQLCLR stored procedure to accept the raw XML

data and the XSLT style sheet, perform the XSL transformation, and write the results to an

XHTML file. The SQLCLR stored procedure code is shown in Listing 11-22.

Listing 11-22. VB 2005 SQLCLR Stored Procedure for XSLT Transformation

Imports System.Data.SqlTypes

Imports System.Xml

Imports System.Xml.Xsl

CHAPTER 11 ■ XML268

794Xch11final.qxd  3/29/07  4:29 PM  Page 268



Namespace APress.Samples

Partial Public Class XSLT

<Microsoft.SqlServer.Server.SqlProcedure()> _

Public Shared Sub XmlToHtml(ByVal RawXml As SqlXml, _

ByVal XslStyleSheet As SqlXml, _

ByVal OutputPage As SqlString)

' Create and load the XslCompiledTransform object

Dim xslt As New XslCompiledTransform()

Dim xmldoc1 As New XmlDocument()

xmldoc1.LoadXml(XslStyleSheet.Value)

xslt.Load(xmldoc1)

' Create and load the Raw XML document

Dim xml As New XmlDocument()

xml.LoadXml(RawXml.Value)

' Create the XmlTextWriter for output to HTML document

Dim htmlout As New XmlTextWriter(OutputPage.Value, _

System.Text.Encoding.Unicode)

' Perform the transformation

xslt.Transform(xml, htmlout)

' Close the XmlTextWriter

htmlout.Close()

End Sub

End Class

End Namespace

The first few lines of Listing 11-22 import the required .NET 2.0 namespaces and

declare the APress.Samples namespace:

Imports System.Data.SqlTypes

Imports System.Xml

Imports System.Xml.Xsl

Namespace APress.Samples

The next section of code declares the requisite class and defines the signature of the

stored procedure XmlToHtml. The stored procedure accepts three parameters: the raw

input XML, the XSLT style sheet, and the name of the output file:

CHAPTER 11 ■ XML 269

794Xch11final.qxd  3/29/07  4:29 PM  Page 269



Partial Public Class XSLT

<Microsoft.SqlServer.Server.SqlProcedure()> _

Public Shared Sub XmlToHtml(ByVal RawXml As SqlXml, _

ByVal XslStyleSheet As SqlXml, _

ByVal OutputPage As SqlString)

Inside the XmlToHtml procedure, the first step is to create a .NET 2.0

XslCompiledTransform object and populate it with the style sheet passed in as a

parameter:

' Create and load the XslCompiledTransform object

Dim xslt As New XslCompiledTransform()

Dim xmldoc1 As New XmlDocument()

xmldoc1.LoadXml(XslStyleSheet.Value)

xslt.Load(xmldoc1)

Then the procedure creates an XmlDocument to hold the raw XML input passed in 

as a parameter:

' Create and load the Raw XML document

Dim xml As New XmlDocument()

xml.LoadXml(RawXml.Value)

Finally, the procedure creates an XmlTextWriter to output the results of the trans-

formation. Then the actual transformation is performed, and the results are written to

the file whose name was specified as the third parameter:

' Create the XmlTextWriter for output to HTML document

Dim htmlout As New XmlTextWriter(OutputPage.Value, _

System.Text.Encoding.Unicode)

' Perform the transformation

xslt.Transform(xml, htmlout)

' Close the XmlTextWriter

htmlout.Close()

End Sub

End Class

End Namespace

CHAPTER 11 ■ XML270

794Xch11final.qxd  3/29/07  4:29 PM  Page 270



■Tip Because the result is output to an XHTML file in the file system, the assembly created needs
EXTERNAL_ACCESS permissions. These can be set from the Project Properties page in Visual Studio,
or specified manually in the CREATE ASSEMBLY statement.

Once the assemblies are installed and the @xml and @xslt variables are defined as

shown in Listings 11-20 and 11-21, the XmlToHtml stored procedure is ready to run, as

shown in Listing 11-23.

Listing 11-23. Executing the XmlToHtml Stored Procedure

EXECUTE XmlToHtml @xml, @xslt, 'c:\adventureworks-inventory.html';

The result is output to the adventureworks-inventory.html file. Figure 11-9 shows what

the results look like in Internet Explorer.

Summary
This chapter discussed SQL Server 2005 integrated XML functionality. The chapter

began with a discussion of legacy XML functionality carried forward, and in some cases

improved upon, from SQL Server 2000. I then discussed the new SQL Server 2005 xml

data type and the functionality implemented to help you take advantage of this new

level of XML integration.

CHAPTER 11 ■ XML 271

Figure 11-9. Result of XmlToHtml procedure

794Xch11final.qxd  3/29/07  4:29 PM  Page 271



Topics covered include the following:

• The SELECT statement’s legacy FOR XML clause and the new SQL Server 2005

enhancements to FOR XML, particularly the built-in support for XPath in SQL

Server 2005’s FOR XML AUTO clause.

• The legacy OPENXML rowset provider.

• SQL Server 2005’s new xml data type, including support for untyped XML and

typed XML.

• The xml data type methods: query(), value(), exist(), modify(), and nodes().

• Primary and secondary XML indexes.

• Using the SQLCLR with the xml data type and FOR XML to perform XSLT

transformations.

The next chapter provides an introduction to SQL Server’s XPath and XQuery sup-

port, including a more detailed discussion of FOR XML PATH, WITH XMLNAMESPACES, XQuery

data types, XPath and XQuery functions and operators, and FLWOR expressions.

CHAPTER 11 ■ XML272

794Xch11final.qxd  3/29/07  4:29 PM  Page 272



XQuery and XPath

As described in Chapter 11, SQL Server 2005 presents a new level of XML integration. 

As part of that integration SQL Server provides the new xml data type and new options for

converting relational data to XML format via the SELECT query’s FOR XML PATH clause. This

chapter discusses how to get the most out of SQL Server’s implementation of the power-

ful and flexible XPath and XQuery standards.

The XML data model represents a departure from the relational model SQL Server

developers know well. The XML model is not a replacement for the relational model, but

it does nicely complement relational data. Operational data is best represented by tables,

because relational databases are composed of tables. XML structures data hierarchically

(and with considerable texture), making it very useful for sharing and processing many

kinds of data, especially data of the hierarchical and semistructured varieties. Relational

tables and XML do not need to be used exclusively of each other. Data stored in tables is

commonly converted to XML format to make it easy to communicate with web services

and other applications over networks. And highly structured XML data from a remote

data source often needs to be stored and queried locally in relational tables. The new 

SQL Server 2005 xml data type and XML-specific query and conversion tools represent a

marriage of relational database and XML technologies. The first step to getting the most

out of that technology is to define the terms I’ll be using throughout this chapter.

■Note XPath and XQuery are big topics that can easily consume an entire book. This chapter is not
meant to be a comprehensive guide to XPath and XQuery, but rather an introduction to SQL Server’s XPath
and XQuery implementations, which are both subsets of their respective standards (the W3C’s XPath 1.0
and XQuery 1.0). In addition to the discussion in this chapter, Appendix B covers the XML Schema data
types used by SQL Server XQuery, and Appendix C lists the definitions for XML-, XPath-, and XQuery-
related words that are introduced in this chapter.

273

C H A P T E R  1 2

794Xch12final.qxd  3/29/07  4:26 PM  Page 273



X-Lingo
The W3C is a standards body that generates “standards, guidelines, software, and tools”

to ensure interoperability on the World Wide Web. One the most widely recognized of

the W3C standards is the XML 1.0 specification, currently in its fourth edition and freely

available at http://www.w3.org/TR/2006/REC-xml-20060816/#sec-intro. XML is a (some-

what contrived) acronym for Extensible Markup Language. According to the W3C, XML

was designed as a “simple, very flexible text format derived from SGML (ISO 8879).”

After the widespread acceptance of XML, it was recognized that there was a need for

tools to retrieve portions of XML documents. In 1999, the W3C proposed the XML Path

Language (XPath) as a language for “addressing parts of an XML document . . .” SQL Server

implements a subset of the W3C XPath 1.0 standard, available at http://www.w3.org/TR/xpath.

Additional requirements for complex querying and manipulation of portions of XML

data were addressed with the W3C’s XML Query Language (XQuery) recommendation in

2003. XQuery is the specification for a query language that “uses the structure of XML

intelligently” to express queries across many different types of XML data. SQL Server

implements a subset of the W3C XQuery 1.0 standard, available at http://www.w3.org/

TR/2006/PR-xquery-20061121/.

CHAPTER 12 ■ XQUERY AND XPATH274

THE XML, XPATH, XQUERY RELATIONSHIP

What’s the relationship between XML, XPath, and XQuery? Specifically, XML is described by the W3C 
as a “subset of the Standard Generalized Markup Language (SGML)” (http://www.w3.org/TR/
2006/REC-xml-20060816/). SGML is a metalanguage for defining other languages, called markup
languages, and markup languages are simply that: languages for marking up text, both to organize it
and to provide instructions for processing it. Both SGML and XML provide for structuring data in a
plain-text, tree-based fashion, using markup “tags” to indicate the hierarchical relationship of the data.
In fact, though XML is only a subset of SGML, it satisfies most needs and has largely superseded SGML,
even for traditional text markup.

The original XPath 1.0 is a standard language designed to integrate common functionality of
Extensible Stylesheet Language Transformations (XSLT) and the XML Pointer (XPointer) standards.
XPath 2.0 is a superset of XPath 1.0, providing a more expressive data model with a richer set of data
types than XPath 1.0.

XQuery 1.0 is an extension to XPath 2.0. Any valid XPath 2.0 expression will run on and return the
same result in XQuery 1.0. Some of the major differences between XQuery 1.0 and XPath 2.0 include
FLWOR expressions (XPath supports only a small subset) described later in the chapter, query prolog,
and some other functionality.

In addition, SQL Server 2005 supports XML DML (XML Data Manipulation Language) statements
that can be applied to the xml data type. Don’t worry if you’re not familiar with these topics; I cover all
of them in detail in this chapter.

794Xch12final.qxd  3/29/07  4:26 PM  Page 274



SQLXML defines Microsoft’s XML integration with SQL Server. Note that Microsoft’s

SQLXML is not the same as the ANSI SQL/XML, defined in Part 14 of the ANSI SQL:2003

standard (http://www.ansi.org). After ANSI SQL:2003 was approved, the ANSI working

group immediately went to work changing SQL/XML to better integrate XPath and

XQuery, effectively adding functionality we SQL Server programmers already have in SQL

Server 2005.

XPath and FOR XML PATH
XPath 1.0 is used in SQL Server in conjunction with the FOR XML PATH clause of the SELECT

statement to specify the structure of the XML result. Because it is used specifically to

define the structure of an XML result, the FOR XML PATH XPath functionality is limited in

its functionality. Specifically, you cannot use features that contain certain filter criteria

or use absolute paths. Briefly, here are the restrictions:

• A FOR XML PATH XPath expression may not begin or end with the / step operator,

and it may not begin with, end with, or contain //.

• FOR XML PATH XPath expressions cannot specify axis specifiers such as child:: or

parent::.

• The “.” (context node) and “..” (context node parent) axis specifiers are also not

allowed.

• The functions defined in Part 4 of the XPath specification, “Core Function Library,”

are not allowed.

• Predicates, which are used to filter result sets, are not allowed. [position()=4] is 

an example of a predicate.

Basically the FOR XML PATH XPath subset allows you to specify the structure of the

resulting XML, relative to the implicit root node. By default the root node of the result is

named row. In general, XPath 1.0 features that can be used to locate specific nodes, return

sets of nodes, or filter result sets are not allowed with FOR XML PATH.

By default, FOR XML PATH is element-centric, meaning results are defined in terms of

element nodes. Consider the query in Listing 12-1.

CHAPTER 12 ■ XQUERY AND XPATH 275

794Xch12final.qxd  3/29/07  4:26 PM  Page 275



Listing 12-1. Simple FOR XML PATH Query Using XPath

SELECT ContactID AS 'Person/ID',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last',

EmailAddress AS 'Person/Email'

FROM Person.Contact

FOR XML PATH;

The result of this query looks like the partial results shown here:

<row>

<Person>

<ID>1</ID>

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

<Email>gustavo0@adventure-works.com</Email>

</Person>

</row>

<row>

<Person>

<ID>2</ID>

<Name>

<First>Catherine</First>

<Middle>R.</Middle>

<Last>Abel</Last>

</Name>

<Email>catherine0@adventure-works.com</Email>

</Person>

</row>

...

XPath expressions follow the column names in the SELECT statement:

SELECT ContactID AS 'Person/ID',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last',

EmailAddress AS 'Person/Email';

CHAPTER 12 ■ XQUERY AND XPATH276

794Xch12final.qxd  3/29/07  4:26 PM  Page 276



XPath expressions are defined as a path separated by step operators. The step operator

(/) indicates that a node is a child of the preceding node. For instance, the XPath expres-

sion Person/ID in the example indicates that a node named ID will be created as a child of

the node named Person.

XPath Attributes

Alternatively, you can define a relational column as an attribute of a node. Listing 12-2,

which is a modified version of Listing 12-1, demonstrates this.

Listing 12-2. FOR XML Defining XML Attributes

SELECT ContactID AS 'Person/@ID',

EmailAddress AS 'Person/@Email',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last'

FROM Person.Contact

FOR XML PATH;

The bolded portion of the SELECT statement in Listing 12-1 generates XML attributes

of the ID and EMAIL nodes by preceding their names in the XPath expression with the @

symbol:

SELECT ContactID AS 'Person/@ID',

EmailAddress AS 'Person/@Email',

In this sample, ID and Email are attributes of the Person element of the result. The

(partial) results of Listing 12-1 look like this:

<row>

<Person ID="1" Email="gustavo0@adventure-works.com">

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

</Person>

</row>

CHAPTER 12 ■ XQUERY AND XPATH 277

794Xch12final.qxd  3/29/07  4:26 PM  Page 277



<row>

<Person ID="2" Email="catherine0@adventure-works.com">

<Name>

<First>Catherine</First>

<Middle>R.</Middle>

<Last>Abel</Last>

</Name>

</Person>

</row>

...

Columns Without Names and Wildcards

Some of the other XPath expression features you can use with FOR XML PATH include

columns without names and wildcard expressions, which are turned into inline content.

The sample in Listing 12-3 demonstrates this.

Listing 12-3. FOR XML Defining XML Attributes

SELECT ContactID AS '*',

',' + EmailAddress,

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last'

FROM Person.Contact

FOR XML PATH;

In this example, the XPath expression for ContactID is the wildcard character *. The

second column is defined as '*' + EmailAddress so the column has no name. Both of

these columns are turned into inline content, as shown in the following (partial) results:

<row>

1,gustavo0@adventure-works.com

<Person>

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

</Person>

</row>

CHAPTER 12 ■ XQUERY AND XPATH278

794Xch12final.qxd  3/29/07  4:26 PM  Page 278



<row>

2,catherine0@adventure-works.com

<Person>

<Name>

<First>Catherine</First>

<Middle>R.</Middle>

<Last>Abel</Last>

</Name>

</Person>

</row>

...

Element Grouping

As you saw in the previous examples, FOR XML groups together nodes that have the same

parent elements. For instance, the First, Middle, and Last elements are all children of the

Name element. They are grouped together in all of the examples because of this. However,

as shown in Listing 12-4, this is not the case when these elements are separated by an ele-

ment with a different parent. Consider Listing 12-4.

Listing 12-4. Two Elements with a Common Parent Element Separated

SELECT ContactID AS 'Person/@ContactID',

EmailAddress AS 'Person/Email',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

Phone AS 'Person/Phone',

LastName AS 'Person/Name/Last'

FROM Person.Contact

FOR XML PATH;

The results of this query include a new Phone element as a child of the Person ele-

ment. Because this new element is positioned between the Person/Name/Middle and

Person/Name/Last elements, FOR XML creates two separate Person/Name elements: one to

encapsulate the First and Middle elements, and another to encapsulate the Last element,

as shown in these results:

CHAPTER 12 ■ XQUERY AND XPATH 279

794Xch12final.qxd  3/29/07  4:26 PM  Page 279



<row>

<Person ContactID="1">

<Email>gustavo0@adventure-works.com</Email>

<Name>

<First>Gustavo</First>

</Name>

<Phone>398-555-0132</Phone>

<Name>

<Last>Achong</Last>

</Name>

</Person>

</row>

<row>

<Person ContactID="2">

<Email>catherine0@adventure-works.com</Email>

<Name>

<First>Catherine</First>

<Middle>R.</Middle>

</Name>

<Phone>747-555-0171</Phone>

<Name>

<Last>Abel</Last>

</Name>

</Person>

</row>

...

The data() Function

FOR XML PATH XPath includes a function called data(). If the column name is specified as

data(), the value is treated as an atomic value in the generated XML. If the next item

generated is also an atomic value, FOR XML PATH appends a space to the end of the data

returned. This is useful for using subqueries to create lists of items, as in Listing 12-5,

which demonstrates use of the data() function.

CHAPTER 12 ■ XQUERY AND XPATH280

794Xch12final.qxd  3/29/07  4:26 PM  Page 280



Listing 12-5. The FOR XML PATH XPath data() Function

SELECT DISTINCT soh.SalesPersonID AS 'SalesPerson/@ID',

(

SELECT soh2.SalesOrderID AS 'data()'

FROM Sales.SalesOrderHeader soh2

WHERE soh2.SalesPersonID = soh.SalesPersonID

FOR XML PATH ('')

) AS 'SalesPerson/@Orders',

c.FirstName AS 'SalesPerson/Name/First',

c.MiddleName AS 'SalesPerson/Name/Middle',

c.LastName AS 'SalesPerson/Name/Last',

c.EmailAddress AS 'SalesPerson/Email'

FROM Sales.SalesOrderHeader soh

INNER JOIN Person.Contact c

ON c.ContactID = soh.SalesPersonID

WHERE soh.SalesPersonID IS NOT NULL

FOR XML PATH;

This sample retrieves all SalesPerson ID numbers from the Sales.SalesOrderHeader

table (eliminating NULLs for simplicity) and retrieves their names in the main query. The

subquery uses the data() function to retrieve a list of each salesperson’s sales order num-

bers and places them in the attribute of the SalesPerson element named Orders. A sample

of the results is shown here:

CHAPTER 12 ■ XQUERY AND XPATH 281

<row>

<SalesPerson ID="284" Orders="46982 47004 47062 47969 48084 49078 49134 49452

49892 50244 50686 50722 51170 51737 51811 51815 51837 51861 53461 53512 

53519 55274 57056 57058 57177 57185 58908 58968 59044 59064 61198 63161

63173 63229 63242 63254 65201 67203 69551">

<Name>

<First>John</First>

<Last>Emory</Last>

</Name>

<Email>john16@adventure-works.com</Email>

</SalesPerson>

</row>

794Xch12final.qxd  3/29/07  4:26 PM  Page 281



<row>

<SalesPerson ID="288" Orders="53485 53492 53502 53554 53588 53594 57059 58915

59045 61180 61245 63203 69553 69564 71874 71926">

<Name>

<First>Julie</First>

<Middle>P.</Middle>

<Last>Estes</Last>

</Name>

<Email>julie0@adventure-works.com</Email>

</SalesPerson>

</row>

...

CHAPTER 12 ■ XQUERY AND XPATH282

XPath and NULL

In all of the preceding examples, FOR XML PATH mapped SQL NULLs to a missing element or

attribute. Consider the results of Listing 12-1 for Mr. Achong. Because his MiddleName in

the table is NULL, the Name/Middle element is missing from the results:

<row>

<Person>

<ID>1</ID>

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

<Email>gustavo0@adventure-works.com</Email>

</Person>

</row>

If you want SQL NULL-valued elements and attributes to appear in the final results,

use FOR XML’s ELEMENTS XSINIL option as shown in Listing 12-6.

794Xch12final.qxd  3/29/07  4:26 PM  Page 282



Listing 12-6. FOR XML with ELEMENTS XSINIL Option

SELECT ContactID AS 'Person/ID',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last',

EmailAddress AS 'Person/Email'

FROM Person.Contact

FOR XML PATH, ELEMENTS XSINIL;

Mr. Achong’s result now looks like the results shown here:

<row xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Person>

<ID>1</ID>

<Name>

<First>Gustavo</First>

<Middle xsi:nil="true" />

<Last>Achong</Last>

</Name>

<Email>gustavo0@adventure-works.com</Email>

</Person>

</row>

Notice the addition of the xsi namespace to the root element. The Name/Middle

element now appears with the xsi:nil attribute set to true indicating it is a NULL.

WITH XMLNAMESPACES

Namespace support is provided by the WITH XMLNAMESPACES option as shown in Listing 12-7.

Listing 12-7. FOR XML PATH and WITH XMLNAMESPACES Option

WITH XMLNAMESPACES('http://www.apress.com/xml/sampleSqlXmlNameSpace' as ns)

SELECT ContactID AS 'ns:Person/ID',

FirstName AS 'ns:Person/Name/First',

MiddleName AS 'ns:Person/Name/Middle',

LastName AS 'ns:Person/Name/Last',

EmailAddress AS 'ns:Person/Email'

FROM Person.Contact

FOR XML PATH;

CHAPTER 12 ■ XQUERY AND XPATH 283

794Xch12final.qxd  3/29/07  4:26 PM  Page 283



The WITH XMLNAMESPACES option in this example declares a namespace called ns: with

the URI http://www.apress.com/xml/sampleSqlXmlNameSpace. FOR XML PATH then adds the

namespace prefix to the Person element, as shown in the sample results:

<row xmlns:ns="http://www.apress.com/xml/sampleSqlXmlNameSpace">

<ns:Person>

<ID>1</ID>

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

<Email>gustavo0@adventure-works.com</Email>

</ns:Person>

</row>

Node Tests

In addition to these options, the FOR XML PATH XPath implementation supports node tests.

The following node tests are supported:

• text() turns the string value of a column into a text node.

• comment() turns the string value of a column into an XML comment.

• node() turns the string value of a column into inline XML content; it is the same as

using the wildcard * as the name.

• processing-instruction(name) turns the string value of a column into an XML pro-

cessing instruction with the specified name.

Listing 12-8 demonstrates use of XPath node tests as column names in a FOR XML PATH

query.

Listing 12-8. FOR XML PATH Using XPath Node Tests

SELECT NameStyle AS 'processing-instruction(nameStyle)',

ContactID AS 'Person/@ID',

ModifiedDate AS 'comment()',

Phone AS 'text()',

CHAPTER 12 ■ XQUERY AND XPATH284

794Xch12final.qxd  3/29/07  4:26 PM  Page 284



FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last',

EmailAddress AS 'Person/Email'

FROM Person.Contact

FOR XML PATH;

The results look like this:

<row>

<?nameStyle 0?>

<Person ID="1" />

<!--2005-05-16T16:33:33.060-->

398-555-0132

<Person>

<Name>

<First>Gustavo</First>

<Last>Achong</Last>

</Name>

<Email>gustavo0@adventure-works.com</Email>

</Person>

</row>

...

In this example, the NameStyle column value is turned into an XML processing

instruction called nameStyle; the ModifiedDate column is turned into an XML comment;

and the contact Phone is turned into a text node.

XQuery and the XML Data Type
XQuery represents the most advanced XML querying language to date. Designed as an

extension to the W3C XPath 2.0 standard, XQuery is a case-sensitive, declarative, func-

tional language with a rich type system based on the XDM data model. The SQL Server

2005 xml data type supports querying of XML data using a subset of XQuery via the

query() method. I start this section with a discussion of XQuery basics.

CHAPTER 12 ■ XQUERY AND XPATH 285

794Xch12final.qxd  3/29/07  4:26 PM  Page 285



Expressions and Sequences

XQuery introduces several advances on the concepts introduced by XPath and other pre-

vious XML querying tools. The most important concepts in XQuery are expressions and

sequences. A sequence is an ordered collection of items; either nodes or atomic values.

■Note Ordered, as it applies to sequences, does not necessarily mean numeric or alphabetic order.
Sequences can be in document order, creation order, or another order. The roughly analogous XPath 1.0
structure was known as a set, a name that implies ordering was unimportant. Unlike the relational model,
however, order is extremely important to XML. In XML the ordering of nodes and other data in storage pro-
vides additional context and can be just as important as the data itself. The XQuery sequence was redefined
to ensure that the importance of proper ordering is recognized. There are some other differences, which I
cover later in this section.

Sequences are denoted by enclosing one of the following in parentheses:

• Lists of items separated by the comma operator (,)

• Range expressions

• Filter expressions

■Note Range expressions and the range expression keyword to are not supported in SQL Server 2005
XQuery. If you are converting an XQuery with range expressions like (1 to 10), you will have to modify it
to run on SQL Server 2005.

A sequence created as a list of items separated by the comma operator might look

like the following:

(1, 2, 3, 4, (5, 6), 7, 8, (), 9, 10)

The comma operator evaluates each of the items in the sequence and concatenates the

result. Sequences cannot be nested, so any sequences within sequences are “flattened out.”

Also, the empty sequence (a sequence containing no items, denoted by empty parentheses:

()) is eliminated. Evaluation of the previous sample sequence results in the following

sequence of ten items:

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

CHAPTER 12 ■ XQUERY AND XPATH286

794Xch12final.qxd  3/29/07  4:26 PM  Page 286



Notice that the nested sequence (5, 6) has been flattened out, and the empty

sequence () is removed during evaluation.

■Note SQL Server 2005 XQuery does not support the W3C-specified sequence operators union,
intersect, and except. If you are porting XQuery code that uses these operators, it will have to be
modified to run on SQL Server 2005.

If one of the operands is an empty sequence, or if the first operand is greater than

the second operand, the result is an empty sequence. Another method of generating a

sequence is with a filter expression. The filter expression is a primary expression followed

by zero or more predicates. An example of a filter expression to generate a sequence

might look like the following:

(//Coordinates/*/text())

An important property of sequences is that a sequence of one item is indistinguish-

able from a singleton atomic value. So the sequence (1.0) is equivalent to the singleton

atomic value 1.0.

Sequences come in three flavors: empty sequences, homogeneous sequences, and

heterogeneous sequences. Empty sequences are sequences that contain no items. As

mentioned before, the empty sequence is annotated with a set of empty parentheses, ().

Homogeneous sequences are sequences of one or more items of the same, or compat-

ible, types. The examples already given are all examples of homogenous sequences.

Heterogeneous sequences are sequences of two or more items of incompatible types,

or singleton atomic types and nodes. The following is an example of a heterogeneous

sequence:

("Harry", 299792458, xs:date("2006-12-29Z"))

SQL Server does not allow heterogeneous sequences that mix nodes with singleton

atomic values. Trying to use the following sequence results in an error:

(<tag/>, "you are it!")

■Tip Singleton atomic values are defined as values that are in the value space of the atomic types. The
value space is the complete set of values that can be expressed with a given type. For instance, the com-
plete value space for the xs:boolean type is true and false. Singleton atomic values are indivisible, for
purposes of the XML Schema standard. Values that fall into this space are decimals, integers, dates, strings,
and other primitive data types.

CHAPTER 12 ■ XQUERY AND XPATH 287

794Xch12final.qxd  3/29/07  4:26 PM  Page 287



Primary expressions are the building blocks of XQuery. An expression in XQuery eval-

uates to a singleton atomic value or sequence. Primary expressions can be any of several

different items:

• Literals, which include string and numeric data type literals. String literals can

be enclosed in either single quotes or double quotes and may contain the XML-

defined entity references &gt;, &lt;, &amp;, &quot;, and &apos;, or Unicode char-

acter references such as &#x20AC; which represents the euro (€) symbol.

• Variable references, which are XML qualified names (QNames) preceded by a $ sign.

A variable reference is defined by its local name. Note that SQL Server 2005 does not

support variable references with a namespace URI prefix, which are defined under

the W3C standard. An example of a variable reference is $count.

• Parenthesized expressions, which are expressions enclosed in parentheses. Paren-

thesized expressions are often used to force a specific order of operator evaluation.

For instance, in the expression (3 + 4) * 2, the parentheses force the addition to

be performed before the multiplication.

• Context item expressions, which are expressions that evaluate to the context item.

The context item can be either a node or an atomic value.

• Function calls, which are composed of a QName followed by a list of arguments in

parentheses. Function calls can reference either built-in functions or user-declared

functions.

The query() Method

The query() method can be used to query xml variables or xml-typed columns in tables, 

as demonstrated in Listing 12-9.

Listing 12-9. query() Method Against an xml Column

SELECT Resume.query('//*:Name.First,

//*:Name.Middle,

//*:Name.Last,

//*:Edu.Level')

FROM HumanResources.JobCandidate;

This simple XQuery query retrieves all first names, middle names, last names, and

education levels for AdventureWorks job candidates. The results for one candidate look

like this:

CHAPTER 12 ■ XQUERY AND XPATH288

794Xch12final.qxd  3/29/07  4:26 PM  Page 288



<p1:Name.First xmlns:p1 =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">

Shai

</p1:Name.First>

<p2:Name.Middle xmlns:p2 =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume" />

<p3:Name.Last xmlns:p3 =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">

Bassli

</p3:Name.Last>

<p4:Edu.Level xmlns:p4 =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/Resume">

Bachelor

</p4:Edu.Level>

The example demonstrates a few key XQuery concepts:

• The first is the // axis at the beginning of the location paths. This axis notation is

defined as shorthand for /descendant-or-self::node()/, which will be described in

more detail in the next section. This particular axis retrieves all nodes with a name

that matches the location step, regardless of where it occurs in the XML being

queried.

• In the example, the four node tests specified are Name.First, Name.Middle, Name.Last,

and Edu.Level. All nodes with the names that match the node tests are returned no

matter where they occur in the XML.

• The * namespace qualifier is a wildcard that matches any namespace occurring in

the XML. Each node in the result node sequence includes an xmlns namespace

declaration.

• This XQuery query is composed of four different paths denoting the four different

node sequences to be returned. They are separated by commas.

I build on the previous example with a discussion of location paths.

CHAPTER 12 ■ XQUERY AND XPATH 289

794Xch12final.qxd  3/29/07  4:26 PM  Page 289



Location Paths

The location path determines which nodes should be returned via XQuery. Following a

location path from left to right generally takes you down and to the right in your XML

node tree (there are exceptions, of course, which I discuss in the section on axis speci-

fiers). If the first character of the path expression is a single solidus (/), the path expres-

sion is an absolute location path, meaning it starts at the root of the XML. Listing 12-10

demonstrates an absolute location path.

■Tip The left-hand / actually stands for a conceptual root node that encompasses your XML input. The
conceptual root node doesn’t actually exist and cannot be viewed in your XML input, nor accessed and
manipulated directly. It’s this conceptual root node that allows XQuery to properly process XML fragments
that are not well-formed (i.e., XML with multiple root nodes) as input.

Listing 12-10. Absolute Location Path

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0"?>

<Geocode>

<Info ID = "1">

<Coordinates Resolution = "High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Location Type = "Business">

<Name>APress, Inc.</Name>

</Location>

</Info>

<Info ID = "2">

<Coordinates Resolution = "High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

<Location Type = "Business">

<Name>Google, Inc.</Name>

</Location>

</Info>

</Geocode>';

SELECT @x.query(N'/Geocode/Info/Coordinates');

CHAPTER 12 ■ XQUERY AND XPATH290

794Xch12final.qxd  3/29/07  4:26 PM  Page 290



This code sample defines an xml variable and creates an XML document with

geocoding data for a couple of well-known businesses. The XQuery uses an absolute

location path to retrieve a node sequence of the latitude and longitude coordinates for

the entire document. The results look like this:

<Coordinates Resolution="High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Coordinates Resolution="High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

A relative location path is specified by excluding the leading solidus, as in the follow-

ing modification to Listing 12-10:

SELECT @x.query(N'Geocode/Info/Coordinates');

And, as previously mentioned, using a double solidus (//) in the lead position returns

nodes that match the node test anywhere they occur in the document. This change to

Listing 12-10 demonstrates this:

SELECT @x.query(N'//Geocode/Info/Coordinates');

In addition, the wildcard character * can be used to match any node by name. The

following example retrieves the root node, all of the nodes on the next level, and all

Coordinates nodes below that:

SELECT @x.query(N'//*/*/Coordinates');

Because the XML document in the example is a simple one, all the variations of

Listing 12-10 return the same result.

The solidus character by itself without a node test is a special case path option. This

returns everything from the root node down. Changing the SELECT in Listing 12-10 to the

following demonstrates this:

SELECT @x.query(N'/');

CHAPTER 12 ■ XQUERY AND XPATH 291

794Xch12final.qxd  3/29/07  4:26 PM  Page 291



Node Tests

The node tests in the previous example are simple name node tests. To match, the nodes

must have the same names as those specified in the node tests. In addition to name node

tests, SQL Server 2005 XQuery supports four node kind tests as listed in Table 12-1.

■Tip Keep in mind that XQuery, like XML, is case-sensitive. This means your node tests and other identi-
fiers must all be of the proper case. The identifier PersonalID, for instance, does not match personalid in
XML or in XQuery. Also note that your database collation case-sensitivity settings do not affect XQuery
queries.

Table 12-1. Supported Node Tests

Node Kind Test Description

comment() Returns true for a comment node only.

node() Returns true for any kind of node.

processing-instruction("name") Returns true for a processing instruction node. Name is an
optional string literal. If it is included, only processing
instruction nodes with that name are returned; if not
included, all processing instructions are returned.

text() Returns true for a text node only.

SQL Server 2005 XQuery does not support the other node kind tests specified in the

XQuery specification. Specifically the schema-element(), element(), attribute(), and

document-node() kind tests are not implemented. The XQuery-specified node type tests

that let you query nodes based on their associated type information are also not imple-

mented in SQL Server 2005.

Listing 12-11 demonstrates use of the processing-instruction() node test to retrieve

the processing instruction from the root level of a document for one product model.

Listing 12-11. Sample processing-instruction() Node Test

SELECT CatalogDescription.query(N'/processing-instruction()') AS Processing_Instr

FROM Production.ProductModel

WHERE ProductModelID = 19;

CHAPTER 12 ■ XQUERY AND XPATH292

794Xch12final.qxd  3/29/07  4:26 PM  Page 292



The following is the result of this query:

<?xml-stylesheet href="ProductDescription.xsl" type="text/xsl"?>

The sample can be modified to retrieve all XML comments from the source by using

the comment() node test, as in Listing 12-12.

Listing 12-12. Sample comment() Node Test

SELECT CatalogDescription.query(N'//comment()') AS Comments

FROM Production.ProductModel

WHERE ProductModelID = 19;

The results of this query look like the following:

<!-- add one or more of these elements... one for each specific product in

this product model -->

<!-- add any tags in <specifications> -->

Listing 12-13 demonstrates use of the node() node test to retrieve the specifications

for product model 19.

Listing 12-13. Sample node() Node Test

SELECT CatalogDescription.query(N'//*:Specifications/node()') AS Specifications

FROM Production.ProductModel

WHERE ProductModelID = 19;

Here is the result of this query (formatted for easy reading):

These are the product specifications.

<Material>Almuminum Alloy</Material>

<Color>Available in most colors</Color>

<ProductLine>Mountain bike</ProductLine>

<Style>Unisex</Style>

<RiderExperience>Advanced to Professional riders</RiderExperience>

CHAPTER 12 ■ XQUERY AND XPATH 293

794Xch12final.qxd  3/29/07  4:26 PM  Page 293



Namespaces

You might notice that the first node of the previous result is not enclosed in XML tags.

This node is a text node located in the <Specifications> node being queried. You might

also notice that the * namespace wildcard mentioned previously is used in this query.

This is used because namespaces are declared in the XML of the CatalogDescription

column. Specifically the root node declaration looks like this:

<p1:ProductDescription xmlns:p1="http://schemas.microsoft.com/sqlserver/2004/07/➥

adventure-works/ProductModelDescription"

xmlns:wm="http://schemas.microsoft.com/sqlserver/2004/07/adventure-➥

works/ProductModelWarrAndMain"

xmlns:wf="http://www.adventure-works.com/schemas/OtherFeatures"

xmlns:html="http://www.w3.org/1999/xhtml"

ProductModelID="19"

ProductModelName="Mountain 100">

The Specifications node of the XML document is declared with the p1 namespace in

the document. Not using a namespace in the query at all, as shown in Listing 12-14,

results in an empty sequence being returned (no matching nodes).

Listing 12-14. Querying the CatalogDescription with No Namespaces

SELECT CatalogDescription.query(N'//Specifications/node()') AS Specifications

FROM Production.ProductModel

WHERE ProductModelID = 19;

In addition to the wildcard namespace specifier, you can use the XQuery prolog to

define namespaces for use in your query. Listing 12-15 shows how the previous example

can be modified to include the p1 namespace with a namespace declaration in the prolog.

Listing 12-15. Prolog Namespace Declaration

SELECT CatalogDescription.query(N'declare namespace

p1="http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/

ProductModelDescription";

//p1:Specifications/node()')

FROM Production.ProductModel

WHERE ProductModelID = 19;

The keywords declare namespace allow you to declare specific namespaces that will be

used in the query. Alternatively you can declare a default namespace as in Listing 12-16.

CHAPTER 12 ■ XQUERY AND XPATH294

794Xch12final.qxd  3/29/07  4:26 PM  Page 294



Listing 12-16. Prolog Default Namespace Declaration

SELECT CatalogDescription.query(N'declare default element namespace

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

//Specifications/node()')

FROM Production.ProductModel

WHERE ProductModelID = 19;

Declaring a default namespace with the declare default element namespace keywords

allows you to eliminate namespace prefixes in your location paths (for steps that fall

within the scope of the default namespace, of course). The result of Listing 12-15 and

Listing 12-16 is the same as the result of the sample in Listing 12-13:

These are the product specifications.

<Material>Almuminum Alloy</Material>

<Color>Available in most colors</Color>

<ProductLine>Mountain bike</ProductLine>

<Style>Unisex</Style>

<RiderExperience>Advanced to Professional riders</RiderExperience>

SQL Server has several predeclared namespaces that can be used in your queries.

With the exception of the xml namespace you can redeclare these namespaces in your

queries. The predeclared namespaces are listed in Table 12-2.

Table 12-2. SQL Server Predeclared XQuery Namespaces

Namespace URI Description

fn http://www.w3.org/2005/xpath-functions XQuery 1.0, XPath 2.0, XSLT 2.0
functions and operators
namespace

sqltypes http://schemas.microsoft.com/sqlserver/ SQL Server 2005 to base type 
2004/sqltypes mapping namespace

xdt http://www.w3.org/2005/xpath-datatypes/ XQuery 1.0/XPath 2.0 data types
namespace

xml http://www.w3.org/XML/1998/namespace Default XML namespace

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance namespace

CHAPTER 12 ■ XQUERY AND XPATH 295

794Xch12final.qxd  3/29/07  4:26 PM  Page 295



The W3C-specified local functions namespace, local (http://www.w3.org/2005/

xquery-local-functions), is not predeclared in SQL Server.

Another useful namespace is http://www.w3.org/2005/xqt-errors, which is the name-

space for XPath and XQuery function and operator error codes. In the XQuery documen-

tation, this URI is bound to the namespace err, though this is not mandatory.

Axis Specifiers

Axis specifiers define the direction of movement of a location path step relative to the cur-

rent context node. The XQuery standard defines several axis specifiers, which can be

defined as forward axes or reverse axes. SQL Server 2005 supports a subset of these axis

specifiers listed in Table 12-3.

Table 12-3. SQL 2005 Supported Axis Specifiers

Axis Name Direction Description

child:: Forward Retrieves the children of the current context node.

descendant:: Forward Retrieves all descendents of the current context node,
recursive style. This includes children of the current node,
children of the children, etc.

self:: Forward Contains just the current context node.

descendant-or-self:: Forward Contains the context node and children of the current
context node.

attribute:: Forward Returns the specified attribute(s) of the current context
node. This axis specifier may be abbreviated as @.

parent:: Reverse Returns the parent of the current context node. This axis
specifier may be abbreviated as “..”.

In addition, the primary expression “.” is the context-item expression. It returns the

current context item (which can be either a node or an atomic value).

■Note The following axes, defined as optional axes by the XQuery 1.0 specification, are not supported
by SQL Server 2005: following-sibling::, following::, ancestor::, preceding-sibling::,
preceding::, ancestor-or-self::, and the deprecated namespace:: axis. If you are porting XQuery
queries from other sources, they may have to be modified to avoid these axis specifiers.

In all of the examples so far, the axis has been omitted, and the default axis of child::

is used in each step. Because child:: is the default axis, the two queries in Listing 12-17

are equivalent.

CHAPTER 12 ■ XQUERY AND XPATH296

794Xch12final.qxd  3/29/07  4:26 PM  Page 296



Listing 12-17. Query With and Without Default Axes

SELECT CatalogDescription.query(N'//*:Specifications/node()') AS Specifications

FROM Production.ProductModel

WHERE ProductModelID = 19;

SELECT CatalogDescription.query(N'//child::*:Specifications/child::node()')

AS Specifications

FROM Production.ProductModel

WHERE ProductModelID = 19;

Listing 12-18 demonstrates the use of the parent:: axis to retrieve Coordinates nodes

from the sample XML.

Listing 12-18. Sample Using the parent:: Axis

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0"?>

<Geocode>

<Info ID = "1">

<Coordinates Resolution = "High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Location Type = "Business">

<Name>APress, Inc.</Name>

</Location>

</Info>

<Info ID = "2">

<Coordinates Resolution = "High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

<Location Type = "Business">

<Name>Google, Inc.</Name>

</Location>

</Info>

</Geocode>';

SELECT @x.query(N'//Location/parent::node()/Coordinates');

This particular XQuery locates all Location nodes, then uses the parent:: axis to

retrieve the parent nodes (Info nodes), and finally returns the Coordinates nodes, which

are children of the Info nodes. The result looks like this:

CHAPTER 12 ■ XQUERY AND XPATH 297

794Xch12final.qxd  3/29/07  4:26 PM  Page 297



<Coordinates Resolution="High">

<Latitude>37.859609</Latitude>

<Longitude>-122.291673</Longitude>

</Coordinates>

<Coordinates Resolution="High">

<Latitude>37.423268</Latitude>

<Longitude>-122.086345</Longitude>

</Coordinates>

Dynamic XML Construction

We previously talked about the history of XQuery 1.0. It’s based on XPath 2.0, which is

in turn based on XPath 1.0. The XPath 1.0 standard was designed to consolidate the best

features of both XSLT and XPointer. One of the benefits of XQuery’s lineage is the ability

to query XML and dynamically construct well-formed XML documents from the results.

Consider the example in Listing 12-19.

Listing 12-19. XQuery Dynamic XML Construction

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0"?>

<Geocode>

<Info ID = "1">

<Location Type = "Business">

<Name>APress, Inc.</Name>

</Location>

</Info>

<Info ID = "2">

<Location Type = "Business">

<Name>Google, Inc.</Name>

</Location>

</Info>

</Geocode>';

SELECT @x.query(N'<Companies>

{

//Info/Location/Name

}

</Companies>');

CHAPTER 12 ■ XQUERY AND XPATH298

794Xch12final.qxd  3/29/07  4:26 PM  Page 298



This query returns an XML document that looks like this:

<Companies>

<Name>APress, Inc.</Name>

<Name>Google, Inc.</Name>

</Companies>

The dynamic construction in the XQuery example looks like this:

<Companies>

{

//Info/Location/Name

}

</Companies>

The <Companies> opening and closing tags in the XQuery act as the root tag for the

resulting XML document. The content of the query, known as the content expression, con-

sists of the location path to retrieve the nodes. The content expression is wrapped in

curly braces inside the <Companies> tags:

{

//Info/Location/Name

}

■Tip Need to output curly braces in your XML output? You can escape them by doubling them up in your
query: {{ and }}.

You can also use the element and attribute dynamic constructors to build your XML

result, as demonstrated in Listing 12-20.

Listing 12-20. Element and Attribute Dynamic Constructors

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0"?>

<Geocode>

<Info ID = "1">

<Location Type = "Business">

<Name>APress, Inc.</Name>

<Address>

CHAPTER 12 ■ XQUERY AND XPATH 299

794Xch12final.qxd  3/29/07  4:26 PM  Page 299



<Street>2560 Ninth St, Ste 219</Street>

<City>Berkeley</City>

<State>CA</State>

<Zip>94710-2500</Zip>

<Country>US</Country>

</Address>

</Location>

</Info>

</Geocode>';

SELECT @x.query(N'element Companies

{

element FirstCompany

{

attribute CompanyID

{

(//Info/@ID)[1]

},

(//Info/Location/Name)[1]

}

}');

This query uses dynamic constructors to build the following XML result:

<Companies>

<FirstCompany CompanyID="1">

<Name>APress, Inc.</Name>

</FirstCompany>

</Companies>

The element Companies dynamic element constructor creates the root <Companies>

node. The FirstCompany node is constructed as a child node:

element Companies

{

element FirstCompany

{

...

}

}

CHAPTER 12 ■ XQUERY AND XPATH300

794Xch12final.qxd  3/29/07  4:26 PM  Page 300



The content expressions of the FirstCompany elements are where the real action takes

place:

element FirstCompany

{

attribute CompanyID

{

(//Info/@ID)[1]

},

(//Info/Location/Name)[1]

}

The CompanyID dynamic attribute constructor retrieves the ID attribute from the first

Info node. The predicate [1] in the path ensures that only the first //Info/@ID is returned.

This path location could also be written like this:

//Info[1]/@ID

The second path location retrieves the first Name node for the first Location node of the

first Info node. Again the [1] predicate ensures only the first matching node is returned.

The path is equivalent to the following:

//Info[1]/Location[1]/Name[1]

To retrieve the second node, change the predicate to [2], and so on.

■Tip By definition, a predicate that evaluates to a numeric singleton value (such as the integer constant 1)
is referred to as a numeric predicate. The predicate truth value is true only when the context position is
equal to the numeric predicate expression. When the numeric predicate is 3, for instance, the predicate truth
value is true only for the third context position. This is a handy way to limit the results of an XQuery query to
a single specific node.

XQuery Comments

XQuery comments (not to be confused with XML comment nodes) are used to document

your queries inline. They can be included in XQuery expressions by enclosing them with

the (: and :) symbols (just like the smiley face emoticon). Comments can be used in your

XQuery expressions anywhere ignorable white space is allowed, and they can be nested.

Comments have no effect on query processing. The following example modifies the

query in Listing 12-19 to include XQuery comments:

CHAPTER 12 ■ XQUERY AND XPATH 301

794Xch12final.qxd  3/29/07  4:26 PM  Page 301



SELECT @x.query(N'<Companies> (: This is the root node :)

{

//Info/Location/Name (: Retrieves all company names (: ALL of them :) :)

}

</Companies>');

You will see comments in some of the examples later in this chapter.

Data Types

XQuery maintains the string value and typed value for all nodes in the referenced 

XML. The type of a node is defined in the XML schema collection associated with the 

xml variable or column. As an example, the built-in AdventureWorks

Production.ManuInstructionsSchemaCollection XML schema collection defines the

LocationID attribute of the Location element as an xsd:integer:

<xsd:attribute name="LocationID" type="xsd:integer" use="required" />

Every instance of this attribute in the XML of the Instructions column of the

Production.ProductModel table must conform to the requirements of this data type. Typed

data can also be manipulated according to the functions and operators defined for this

type. For untyped XML, the typed data is defined as xdt:untypedAtomic. A listing of XDM

data types available to SQL Server via XQuery is given in Appendix B.

Predicates

An XQuery predicate is an expression that evaluates to one of the xs:boolean values true

or false. In XQuery predicates are used to filter the results of a node sequence, discard-

ing nodes from the sequence that don’t meet the specified criteria. Predicates limit the

results by converting the result of the predicate expression into an xs:boolean value,

referred to as the predicate truth value. The predicate truth value is determined for each

item of the input sequence according to the following rules:

1. If the type of the expression is numeric, the predicate truth value is true if the

value of the predicate expression is equal to the context position; otherwise, for 

a numeric predicate, the predicate truth value is false.

2. If the type of the expression is a string, the predicate is false if the length of the

expression is 0. For a string type expression with a length greater than 0, the predi-

cate truth value is true.

3. If the type of the expression is xs:boolean, the predicate truth value is the value of

the expression.

CHAPTER 12 ■ XQUERY AND XPATH302

794Xch12final.qxd  3/29/07  4:26 PM  Page 302



4. If the expression results in an empty sequence, the predicate truth value is false.

5. If the value of the predicate expression is a node sequence, the predicate truth

value is true if the sequence contains at least one node; otherwise it is false.

Queries that include a predicate return only nodes in a sequence for which the

predicate truth value evaluates to true. Predicates are composed of expressions, conve-

niently referred to as predicate expressions, enclosed in square brackets ([]). You can

specify multiple predicates in a path, and they are evaluated in order of occurrence

from left to right.

■Note The XQuery specification says that multiple predicates are evaluated from left to right, but it also
gives some wiggle room for vendors to perform predicate evaluations in other orders, allowing them to take
advantage of vendor-specific features such as indexes and other optimizations. You don’t have to worry too
much about the internal evaluation order of predicates though. No matter what order predicates are actually
evaluated in, the end results have to be the same as if the predicates were evaluated left to right.

Value Comparison Operators

As mentioned, the basic function of predicates is to filter results. Results are filtered by

specified comparisons, and XQuery offers a rich set of comparison operators. These

operators fall into three main groups: value comparison operators, general comparison

operators, and node comparison operators. Value comparison operators compare single-

ton atomic values only. Trying to compare sequences with the value comparison opera-

tors results in an error. The value comparison operators are listed in Table 12-4.

Table 12-4. Value Comparison Operators

Operator Description

eq Equality operator

ne Not equals operator

lt Less than operator

le Less than or equal to operator

gt Greater than operator

ge Greater than or equal to operator

CHAPTER 12 ■ XQUERY AND XPATH 303

794Xch12final.qxd  3/29/07  4:26 PM  Page 303



Value comparisons follow a specific set of rules:

1. The operands are atomized.

2. If either atomized operand is an empty sequence, the result is an empty sequence.

3. If either atomized operand is a sequence with a length greater than 1, an error is

raised.

4. If either atomized operand is of type xs:untypedAtomic, it is cast to xs:string.

5. If the operands have compatible types, they are compared using the appropriate

operator. If the comparison of the two operands using the chosen operator evalu-

ates to true, the result is true; otherwise the result is false. If the operands have

incompatible types, an error is thrown.

Consider the value comparison examples in Listing 12-21.

Listing 12-21. Value Comparison Examples

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0" ?>

<Animal>

Cat

</Animal>';

SELECT @x.query(N'9 eq 9.0                     (: 9 is equal to 9.0 :)');

SELECT @x.query(N'4 gt 3                       (: 4 is greater than 3 :)');

SELECT @x.query(N'(/Animal/text())[1] lt "Dog" (: Cat is less than Dog :)') ;

The result of these queries is the following:

true

true

true

Listing 12-22 demonstrates a value comparison between two incompatible types.

Listing 12-22. Incompatible Type Value Comparison

DECLARE @x XML;

SELECT @x = N'';

SELECT @x.query(N'3.141592 eq "Pi"') ;

CHAPTER 12 ■ XQUERY AND XPATH304

794Xch12final.qxd  3/29/07  4:26 PM  Page 304



The result of comparing the xs:decimal value 3.141592 to the xs:string value Pi is an

error because xs:decimal and xs:string are incompatible types:

Msg 2234, Level 16, State 1, Line 4

XQuery [query()]: The operator "eq" cannot be applied to "xs:decimal" and 

"xs:string" operands.

General Comparison Operators

General comparisons are existential comparisons that work on operand sequences of

any length. Existential simply means that if one atomized value from the first operand

sequence fulfills a value comparison with at least one atomized value from the second

operand sequence, the result is true. The general comparison operators will look famil-

iar to programmers who are versed in other languages, particularly C# and other C-style

languages. They are listed in Table 12-5.

Table 12-5. General Comparison Operators

Operator Description

= Equal

!= Not equal

< Less than

> Greater than

<= Less than or equal

>= Greater than or equal

Listing 12-23 demonstrates a selection of general comparisons.

Listing 12-23. General Comparison Examples

DECLARE @x xml;

SELECT @x = '';

SELECT @x.query('(3.141592, 1) = (2, 3.141592) (: true :) ');

SELECT @x.query('(1.0, 2.0, 3.0) = 1 (: true :) ');

SELECT @x.query('("Joe", "Harold") < "Adam" (: false :) ');

SELECT @x.query('xs:date("1999-01-01Z") < xs:date("2006-01-01Z")    (: true :)');

CHAPTER 12 ■ XQUERY AND XPATH 305

794Xch12final.qxd  3/29/07  4:26 PM  Page 305



The result is the following:

true

true

false

true

Here’s how the general comparison operators work. The first query compares the

sequence (3.141592, 1) and (2, 3.141592) using the = operator. The comparison atom-

izes the two operand sequences and compares them using the rules for the equivalent

value comparison operators. Since the atomic value 3.141592 exists in both sequences,

the equality test result is true.

The second example compares the sequence (1.0, 2.0, 3.0) to the atomic value 1.

The atomic values 1.0 and 1 are compatible types and are equal, so the equality test result

is true. The third query returns false because neither of the atomic values "Joe" or

"Harold" are lexically less than the atomic value "Adam".

The final example compares two xs:date values. Since the date 1999-01-01 is less than

the date 2006-01-01, the result is true.

Unlike the homogenous sequences in Listing 12-22, a heterogeneous sequence is

one that combines nodes and atomic values, or atomic values of incompatible types

(such as xs:string and xs:decimal). Trying to perform a general comparison with a het-

erogeneous sequence causes an error on SQL Server. Listing 12-24 demonstrates.

Listing 12-24. General Comparison with Heterogeneous Sequence

DECLARE @x xml;

SELECT @x = '';

SELECT @x.query('(xs:date("2006-10-09Z"), 6.02E23) > xs:date("2007-01-01Z")');

The error generated by Listing 12-23 looks like the following:

Msg 9311, Level 16, State 1, Line 3

XQuery [query()]: Heterogeneous sequences are not allowed in '>', found

'xs:double'

and 'xs:date'.

CHAPTER 12 ■ XQUERY AND XPATH306

794Xch12final.qxd  3/29/07  4:26 PM  Page 306



SQL Server does not allow heterogeneous sequences that mix nodes and atomic val-

ues, as demonstrated in Listing 12-25.

Listing 12-25. Mixing Nodes and Atomic Values in Sequences

DECLARE @x xml;

SELECT @x = '';

SELECT @x.query('(1, <myNode>Testing</myNode>)');

CHAPTER 12 ■ XQUERY AND XPATH 307

XQUERY DATE FORMAT

SQL Server’s XQuery implementation has a special requirement concerning xs:date, xs:time,
xs:dateTime, and derived types. Per the subset of the ISO 8601 standard that SQL Server uses, date
and time values must include a time zone. SQL Server strictly enforces this rule. Not including a time
zone in values of one of these types in an XQuery expression will result in a “Static simple type valida-
tion” error. The time zone must follow a date or time value and can be either of the following:

1. The capital letter Z which stands for the zero meridian in UTC (Coordinated Universal Time). The
zero meridian runs through Greenwich, England.

2. An offset from the zero meridian in the format [+/-]hh:mm. For instance, the U.S. Eastern Time
zone would be indicated as -05:00.

Here are a few sample ISO 8601 formatted dates and times acceptable to SQL Server, with
descriptions:

• 1999-05-16Z: May 16, 1999, no time, UTC time zone

• 09:15:00-05:00: No date, 9:15 AM, U.S. and Canada Eastern Time zone

• 2003-12-25T20:00:00-08:00: December 25, 2003, 8:00 PM, U.S. and Canada Pacific Time zone

• 2004-07-06T23:59:59.987+01:00: July 6, 2004, 11:59:59.987 PM (.987 is fractional seconds),
Central European Time zone

If you are trying to run third-party samples from other books (or even from the XQuery standard),
you may have to modify xs:date values to include a time zone. Keep this in mind when building new
XQuery expressions or converting existing expressions to SQL Server.

794Xch12final.qxd  3/29/07  4:26 PM  Page 307



Trying to mix and match nodes and atomic values in a sequence like this results in an

error message like the following:

Msg 2210, Level 16, State 1, Line 3

XQuery [query()]: Heterogeneous sequences are not allowed: found 'xs:integer +'

and 'element(myNode,xdt:untyped)'

Node Comparisons

The third type of comparison that XQuery allows is the node comparison. Node compar-

isons allow you to compare XML nodes in document order. The node comparison

operators are listed in Table 12-6.

Table 12-6. Node Comparison Operators

Operator Description

is Node identity equality

<< Left node precedes right node

>> Left node follows right node

The is operator compares two nodes to each other and returns true if the left node is

the same node as the right node. Note that this is not a test of the equality of node con-

tents but rather of the actual nodes themselves. Consider the sample node comparisons

in Listing 12-26.

Listing 12-26. Node Comparison Samples

DECLARE @x xml;

SET @x = N'<?xml version = "1.0"?>

<Root>

<NodeA>Test Node</NodeA>

<NodeA>Test Node</NodeA>

<NodeB>Test Node</NodeB>

</Root>';

SELECT @x.query('((/Root/NodeA)[1] is (//NodeA)[1])            (: true :)');

SELECT @x.query('((/Root/NodeA)[1] is (/Root/NodeA)[2])        (: false :)');

SELECT @x.query('((/Root/NodeA)[2] << (/Root/NodeB)[1])        (: true :)');

CHAPTER 12 ■ XQUERY AND XPATH308

794Xch12final.qxd  3/29/07  4:26 PM  Page 308



The results are the following:

true

false

true

The first query uses the is operator to compare (/Root/NodeA)[1] to itself. The [1]

numeric predicate at the end of the path ensures that only a single node is returned

for comparison. The right-hand and left-hand expressions must both evaluate to a

singleton or empty sequence. The result of this comparison is true only because

(/Root/NodeA)[1] is the exact same node returned by the (//NodeA)[1] path on the

right-hand side of the operator.

The second query compares (/Root/NodeA)[1] with (/Root/NodeA)[2]. Even though

the two nodes have the same name and the same content, they are in fact different

nodes. Because they are different nodes, the is operator returns false.

The final query retrieves the second NodeA node with the path (/Root/NodeA)[2].

Then it uses the << operator to determine if this node precedes the NodeB node from the

path (/Root/NodeB)[1]. Since the second NodeA precedes the NodeB in document order,

the result of this comparison is true.

A node comparison results in an xs:boolean value or to an empty sequence if one of

the operands results in an empty sequence. This is demonstrated in Listing 12-27.

Listing 12-27. Node Comparison That Evaluates to an Empty Sequence

DECLARE @x xml;

SELECT @x = N'<?xml version = "1.0"?>

<Root>

<NodeA>Test Node</NodeA>

</Root>';

SELECT @x.query('((/Root/NodeA)[1] << (/Root/NodeZ)[1]) (: empty sequence :)');

The result of the node comparison is an empty sequence because the right-hand

path expression evaluates to an empty sequence (because no node named NodeZ exists in

the XML document).

CHAPTER 12 ■ XQUERY AND XPATH 309

794Xch12final.qxd  3/29/07  4:26 PM  Page 309



Conditional Expressions (if . . . then . . . else)

As shown in the previous examples, XQuery returns xs:boolean values or empty

sequences as the result of comparisons. XQuery also provides the conditional

if...then...else expression to return an expression based on the xs:boolean value of

another expression. The format for the XQuery conditional expression is the following:

if (test-expression)

then then-expression

else else-expression

In this syntax test-expression represents the conditional expression that is evalu-

ated, the result of which will determine the returned result. When evaluating

test-expression, the following rules apply:

1. If test-expression results in an empty sequence, the result is false.

2. If test-expression results in an xs:boolean value, the result is the xs:boolean value

of the expression.

3. If test-expression results in a sequence of one or more nodes, the result is true.

4. If these fail, a static error is raised.

If test-expression evaluates to true, then-expression is returned. If test-expression

evaluates to false, else-expression is returned.

The XQuery conditional is a declarative expression. Unlike the C# if...else state-

ment or VB’s If...Then...Else construct, XQuery’s conditional if...then...else doesn’t

represent a branch in procedural logic or a change in program flow. It acts like a function

that accepts a conditional expression as input and returns an expression as a result. In

this respect, XQuery’s if . . . then . . . else has more in common with the SQL CASE expres-

sion than with the if statement in procedural languages. In the XQuery if . . . then . . .

else, syntax parentheses are required around the test-expression, and the else keyword

is mandatory.

Arithmetic Expressions

XQuery arithmetic expressions support the usual mathematical operations found in most

programming languages, including the following:

• Multiplication (*)

• Division (div)

• Addition (+)

CHAPTER 12 ■ XQUERY AND XPATH310

794Xch12final.qxd  3/29/07  4:26 PM  Page 310



• Subtraction (-)

• Modulo (mod)

XQuery also supports the unary plus (+) and unary minus (-) operators. Because

the solidus character (forward slash) is used as a path separator in XQuery, the divi-

sion operator is specified as div. The modulo operator, mod, returns the remainder of

division.

Of the supported operators, unary plus and unary minus operators have the high-

est precedence. Multiplication, division, and modulo are the next highest. Binary

addition and subtraction have the lowest precedence. Parentheses can be used to force

the evaluation order of mathematical operations.

XQuery Functions

XQuery provides several built-in functions defined in the XQuery Functions and

Operators specification (sometimes referred to as “F&O”), which is available at http://

www.w3.org/TR/xquery-operators/. The built-in functions are in the predeclared name-

space fn:.

■Tip The fn: namespace does not have to be specified when calling a built-in function. Some people
leave it off to improve readability of their code.

SQL Server 2005–supported built-in XQuery functions are listed in Table 12-7.

CHAPTER 12 ■ XQUERY AND XPATH 311

INTEGER DIVISION IN XQUERY

SQL Server 2005 XQuery does not support the idiv integer division operator. The XQuery specifica-
tion defines idiv for variables $x and $y as equivalent to the expression $x div $y cast as
xs:integer. If you need to convert XQuery code that uses the idiv operator to SQL Server, you can
use the following idiv-equivalent expression:

($arg1 div $arg2) cast as xs:integer?

794Xch12final.qxd  3/29/07  4:26 PM  Page 311



Table 12-7. Supported Built-In XQuery Functions

Function Description

fn:avg(x) Returns the average of the sequence of numbers x. Example:
fn:avg( (10, 20, 30, 40, 50) ) returns 30.

fn:ceiling(n) Returns the smallest number without a fractional part that is
not less than n. Example: fn:ceiling(1.1) returns 2.

fn:concat(s1, s2, ...) Concatenates zero or more strings and returns the
concatenated string as a result. Example: fn:concat("hi", ",",
"how are you?") returns "hi, how are you?".

fn:contains(s1, s2) Returns true if the string s1 contains the string s2. Example:
fn:contains("fish", "is") returns true.

fn:count(x) Returns the number of items in the sequence x. Example:
fn:count( (1, 2, 4, 8, 16) ) returns 5.

fn:data(a) Returns the typed value of each item specified by the argument
a. Example: fn:data( (3.141592, "hello") ) returns "3.141592
hello".

fn:distinct-values (x) Returns the sequence x with duplicate values removed.
Example: fn:distinct-values( (1, 2, 3, 4, 5, 4, 5) )
returns "1 2 3 4 5".

fn:empty(i) Returns true if i is an empty sequence; returns false otherwise.
Example: fn:empty( (1, 2, 3) ) returns false.

fn:expanded-QName(u, l) Returns an xs:QName. The arguments u and l represent the
xs:QName’s namespace URI and local name, respectively.

fn:false() Returns the xs:boolean value false. Example: fn:false()
returns false.

fn:floor(n) Returns the largest number without a fractional part that is not
greater than n. Example: fn:floor(1.1) returns 1.

fn:id(x) Returns the sequence of element nodes with ID values that
match one or more of the IDREF values supplied in x. The
parameter x is treated as a white space–separated sequence of
tokens.

fn:last() Returns the index number of the last item in the sequence
being processed. The first index in the sequence has an index
of 1.

fn:local-name(n) Returns the local name, without the namespace URI, of the
specified node n.

fn:local-name-from-QName(q) Returns the local name part of the xs:QName argument q. The
value returned is an xs:NCName.

fn:max(x) Returns the item with the highest value from the sequence x.
Example: fn:max( (1.0, 2.5, 9.3, 0.3, -4.2) ) returns 9.3.

fn:min(x) Returns the item with the lowest value from the sequence x.
Example: fn:min( ("x", "q", "u", "e", "r", "y") )
returns "e".

CHAPTER 12 ■ XQUERY AND XPATH312

794Xch12final.qxd  3/29/07  4:26 PM  Page 312



Function Description

fn:not(b) Returns true if the effective Boolean value of b is false; returns
false if the effective Boolean value is true. Example:
fn:not(xs:boolean("true")) returns false.

fn:namespace-uri(n) Returns the namespace URI of the specified node n.

fn:namespace-uri-from-QName(q) Returns the namespace URI part of the xs:QName argument q.
The value returned is an xs:NCName.

fn:number(n) Returns the numeric value of the node indicated by n. Example:
fn:number("/Root/NodeA[1]").

fn:position() Returns the index number of the context item in the sequence
currently being processed.

fn:round(n) Returns the number closest to n that does not have a fractional
part. Example: fn:round(10.5) returns 11.

fn:string(a) Returns the value of the argument a, expressed as an xs:string.
Example: fn:string(3.141592) returns "3.141592".

fn:string-length(s) Returns the length of the string s. Example: 
fn:string-length("abcdefghij") returns 10.

fn:substring(s, m, n) Returns n characters from the string s, beginning at position m.
If n is not specified, all characters from position m to the end of
the string are returned. The first character in the string is posi-
tion 1. Example: fn:substring("Money", 2, 3) returns "one".

fn:sum(x) Returns the sum of the sequence of numbers in x. Example:
fn:sum( (1, 4, 9, 16, 25) ) returns 55.

fn:true() Returns the xs:boolean value true. Example: fn:true() returns
true.

In addition, two functions from the sql: namespace are supported. The

sql:column("column_name") function allows you to expose and bind SQL Server relational

column data in XQuery queries. Listing 12-28 demonstrates the sql:column function.

Listing 12-28. The sql:column Function

DECLARE @x xml;

SELECT @x = N'';

SELECT @x.query(N'<Name>

<ID>{ sql:column("p.ContactID") }</ID>

<FullName>

{ sql:column("p.FirstName"),

sql:column("p.MiddleName"),

sql:column("p.LastName") }

CHAPTER 12 ■ XQUERY AND XPATH 313

794Xch12final.qxd  3/29/07  4:26 PM  Page 313



</FullName>

</Name>')

FROM Person.Contact p

WHERE p.ContactID <= 5

ORDER BY p.ContactID;

The result of this example is a set of XML documents with the ContactID and full

name of the first five contacts from the Person.Contact table:

<Name><ID>1</ID><FullName>Gustavo Achong</FullName></Name>

<Name><ID>2</ID><FullName>Catherine R. Abel</FullName></Name>

<Name><ID>3</ID><FullName>Kim Abercrombie</FullName></Name>

<Name><ID>4</ID><FullName>Humberto Acevedo</FullName></Name>

<Name><ID>5</ID><FullName>Pilar Ackerman</FullName></Name>

The sql:variable("variable_name") function goes another step, allowing you to

expose T-SQL variables in XQuery. Listing 12-29 gives an example of combining the

sql:column and sql:variable functions in one XQuery query.

Listing 12-29. XQuery sql:column and sql:variable Functions Example

/* 10% discount */

DECLARE @discount NUMERIC(3, 2);

SELECT @discount = 0.10;

DECLARE @x xml;

SELECT @x = '';

SELECT @x.query('<Product>

<Model-ID> { sql:column("ProductModelID") }</Model-ID>

<Name> { sql:column("Name") }</Name>

<Price> { sql:column("ListPrice") } </Price>

<DiscountPrice>

{ sql:column("ListPrice") -

(sql:column("ListPrice") * sql:variable("@discount") ) }

</DiscountPrice>

</Product>

')

FROM Production.Product p

WHERE ProductModelID = 30;

CHAPTER 12 ■ XQUERY AND XPATH314

794Xch12final.qxd  3/29/07  4:26 PM  Page 314



The XQuery generates XML documents using the sql:column function to retrieve the

ListPrice from the Production.Product table. It also uses the sql:variable function to cal-

culate a discount price for the items retrieved. This is what a sample of the results looks

like (formatted for easier reading):

<Product>

<Model-ID>30</Model-ID>

<Name>Road-650 Red, 58</Name>

<Price>782.99</Price>

<DiscountPrice>704.691</DiscountPrice>

</Product>

<Product>

<Model-ID>30</Model-ID>

<Name>Road-650 Red, 60</Name>

<Price>782.99</Price>

<DiscountPrice>704.691</DiscountPrice>

</Product>

...

Constructors and Casting

XQuery types provide constructor functions to dynamically create instances of the

type. The constructor functions are of the format: xs:TYP(value), where TYP is the

XQuery type. Most of the XQuery types have constructor functions; however, the fol-

lowing types do not have constructors in SQL Server XQuery: xs:yearMonthDuration,

xs:dayTimeDuration, xs:QName, xs:NMTOKEN, and xs:NOTATION.

The following are examples of XQuery constructor functions:

xs:boolean("1")     (: returns true :)

xs:integer(1234)    (: returns 1234 :)

xs:float(9.8723E+3) (: returns 9872.3 :)

xs:NCName("my-id")  (: returns the NCName "my-id" :)

Numeric types can be implicitly cast to their base types (or other numeric types) by

XQuery to ensure proper results of calculations. The process of implicit casting is known

as type promotion. For instance, in the following sample expression, the xs:integer type

value is implicitly cast to a xs:decimal to complete the calculation:

xs:integer(100) + xs:decimal(100.99)

CHAPTER 12 ■ XQUERY AND XPATH 315

794Xch12final.qxd  3/29/07  4:26 PM  Page 315



■Note Only numeric types can be implicitly cast. String and other types cannot be implicitly cast by XQuery.

Explicit casting is performed by using the cast as keywords. Examples of explicit

casting include the following:

xs:string("98d3f4") cast as xs:hexBinary?  (: 98d3f4 :)

100 cast as xs:double?                     (: 1.0E+2 :)

"0" cast as xs:boolean?                    (: true :)

The ? after the target data type is the optional occurrence indicator. It is used to indi-

cate that an empty sequence is allowed. SQL Server XQuery requires the ? after the cast

as expression. SQL Server BOL provides a detailed description of the XQuery type casting

rules at http://msdn2.microsoft.com/en-us/library/ms191231.aspx.

The instance of Boolean operator allows you to determine the type of a singleton

value. The operator takes a singleton value on its left-hand side, and a type on its right.

The xs:boolean value true is returned if the atomic value represents an instance of the

specified type. The following examples demonstrate the instance of operator:

10 instance of xs:integer      (: returns true :)

100 instance of xs:decimal     (: returns true :)

"hello" instance of xs:bytes   (: returns false :)

The ? optional occurrence indicator can be appended after the data type to indicate

that the empty sequence is allowable (though it is not mandatory as with the cast opera-

tor), as in this example:

9.8273 instance of xs:double? (: returns true :)

FLWOR Expressions

FLWOR expressions provide a way to iterate over a sequence and bind intermediate results

to variables. FLWOR is an acronym for the keywords that define this type of expression:

for, let, where, order by, and return. This section discusses XQuery’s powerful FLWOR

expressions.

■Note SQL Server 2005 XQuery does not support the let keyword.

CHAPTER 12 ■ XQUERY AND XPATH316

794Xch12final.qxd  3/29/07  4:26 PM  Page 316



for and return

The for and return keywords have long been a part of XPath, though in not nearly so

powerful a form as the XQuery FLWOR expression. The for keyword specifies that a vari-

able is iteratively bound to the results of the specified path expression. The result of this

iterative binding process is known as a tuple stream. The XQuery for expression is roughly

analogous to the T-SQL SELECT statement. The for keyword must, at a minimum, have a

matching return clause after it. The sample in Listing 12-30 demonstrates a basic for

expression.

Listing 12-30. Basic XQuery for . . . return

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*

return $spec/text()') AS Description

FROM Production.ProductModel

WHERE ProductModelID = 19;

The for clause iterates through all elements returned by the path expression. It then

binds the elements to the $spec variable. The tuple stream that is bound to $spec consists

of the following:

$spec = <Material>Almuminum Alloy</Material>

$spec = <Color>Available in most colors</Color>

$spec = <ProductLine>Mountain bike</ProductLine>

$spec = <Style>Unisex</Style>

$spec = <RiderExperience>Advanced to Professional riders</RiderExperience>

The return clause applies the text() function to the variable to return the text node

of each element as it is bound to $spec. The results look like this (the results are not pro-

duced with a line feed or other separator between them; I separated them here for easy

reading):

Almuminum Alloy

Available in most colors

Mountain bike

Unisex

Advanced to Professional riders

CHAPTER 12 ■ XQUERY AND XPATH 317

794Xch12final.qxd  3/29/07  4:26 PM  Page 317



The sample can be modified to return an XML result, using the techniques described

previously in the “Dynamic XML Construction” section. Listing 12-31 demonstrates.

Listing 12-31. XQuery for . . . return with XML Result

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*

return <detail> { $spec/text() } </detail>') AS Description

FROM Production.ProductModel

WHERE ProductModelID = 19;

The constructed XML result looks like this:

<detail>Almuminum Alloy</detail>

<detail>Available in most colors</detail>

<detail>Mountain bike</detail>

<detail>Unisex</detail>

<detail>Advanced to Professional riders</detail>

XQuery allows you to bind multiple variables in the for clause. When you bind multi-

ple variables, the result is the Cartesian product of all possible values of the variables.

SQL Server programmers will recognize the Cartesian product as being roughly equiva-

lent to the SQL CROSS JOIN operator. Listing 12-32 modifies the previous example further

to generate the Cartesian product of the Specifications and Warranty child node text.

Listing 12-32. XQuery Cartesian Product with for Expression

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*,

$feat in //ns:ProductDescription/*:Features/*:Warranty/node()

return <detail> { $spec/text() } + { $feat/. cast as xs:string? } </detail>') 

AS Description

FROM Production.ProductModel

WHERE ProductModelID = 19;

CHAPTER 12 ■ XQUERY AND XPATH318

794Xch12final.qxd  3/29/07  4:26 PM  Page 318



The $spec variable is bound to the same nodes as shown previously. The $feat vari-

able is added as a second variable binding in the for clause. Specifically it is bound to the

child nodes of the Warranty element, which are the following:

<p1:WarrantyPeriod>3 years</p1:WarrantyPeriod>

<p1:Description>parts and labor</p1:Description>

The Cartesian product of the text nodes of these two tuple streams consists of ten

possible combinations. The final result of the XQuery is the following:

<detail>Almuminum Alloy + 3 years</detail>

<detail>Almuminum Alloy + parts and labor</detail>

<detail>Available in most colors + 3 years</detail>

<detail>Available in most colors + parts and labor</detail>

<detail>Mountain bike + 3 years</detail>

<detail>Mountain bike + parts and labor</detail>

<detail>Unisex + 3 years</detail>

<detail>Unisex + parts and labor</detail>

<detail>Advanced to Professional riders + 3 years</detail>

<detail>Advanced to Professional riders + parts and labor</detail>

A bound variable can be used immediately after it is bound, even in the same for

clause. Listing 12-33 demonstrates.

Listing 12-33. Using a Bound Variable in the for Clause

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications,

$color in $spec/Color

return <color> { $color/text() } </color>') AS Color

FROM Production.ProductModel

WHERE ProductModelID = 19;

In this example, the $spec variable is bound to the Specifications node. It is then

used in the same for clause to bind a value to the variable $color. The result is the

following:

<color>Available in most colors</color>

CHAPTER 12 ■ XQUERY AND XPATH 319

794Xch12final.qxd  3/29/07  4:26 PM  Page 319



where

The where keyword specifies an optional clause to filter tuples generated by the for

clause. The expression in the where clause is evaluated for each tuple and those for which

the effective Boolean value evaluates to false are discarded from the final result. Listing

12-34 demonstrates use of the where clause to limit the results to only those tuples that

contain the letter A.

Listing 12-34. where Clause Demonstration

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*

where $spec[contains(., "A")]

return <detail> { $spec/text() } </detail>') AS Detail

FROM Production.ProductModel

WHERE ProductModelID = 19

The result includes only those items that contain the letter A, as shown here:

<detail>Almuminum Alloy</detail>

<detail>Available in most colors</detail>

<detail>Advanced to Professional riders</detail>

The functions and operators described previously in this chapter (such as contains

in the example) can be used in the where clause expression to limit results as required by

your application.

order by

The order by clause is an optional clause of the FLWOR statement. The order by clause

reorders the tuple stream generated by the for clause, using criteria you specify. The

order by criteria consists of one or more ordering specifications that are made up of an

expression and an optional order modifier. Ordering specifications are evaluated from

left to right.

The optional order modifier is either ascending or descending to indicate the direction

of ordering. The default is ascending, as shown in Listing 12-35.

CHAPTER 12 ■ XQUERY AND XPATH320

794Xch12final.qxd  3/29/07  4:26 PM  Page 320



Listing 12-35. The order by Clause

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*

order by $spec/. descending

return <detail> { $spec/text() } </detail>') AS Detail

FROM Production.ProductModel

WHERE ProductModelID = 19;

The sample uses the order by clause to sort the results in descending (reverse) order.

The results look like this:

<detail>Unisex</detail>

<detail>Mountain bike</detail>

<detail>Available in most colors</detail>

<detail>Almuminum Alloy</detail>

<detail>Advanced to Professional riders</detail>

Summary
This chapter expanded the discussion of XML in Chapter 11. In particular, I focused on

the SQL Server implementations of XPath and XQuery, including the following topics:

• A more detailed discussion of the SELECT statement’s FOR XML PATH clause

• The WITH XMLNAMESPACES keywords

• Node tests and axis specifiers

• XQuery predicates

• XML Schema data types

• Conditional and arithmetic expressions

• Value, general, and node comparisons

CHAPTER 12 ■ XQUERY AND XPATH 321

794Xch12final.qxd  3/29/07  4:26 PM  Page 321



• XQuery functions and operators

• Data type instance constructors

• FLWOR expressions

More information on XML Schema data types is provided in Appendix B, and a short

list of XQuery- and XML-specific terms and definitions is provided in Appendix C.

The next chapter discusses SQL Server system metadata and how to programmati-

cally access it via T-SQL. System views, including ANSI-defined information schema

views, SQL Server catalog views, compatibility views, and useful system functions will

all be discussed.

CHAPTER 12 ■ XQUERY AND XPATH322

794Xch12final.qxd  3/29/07  4:26 PM  Page 322



SQL Metadata

Sometimes you need to know the structure of your database and tables. Consider

administrative applications such as Microsoft SQL Server Management Studio that need

to retrieve metadata for many different types of database objects. Under the hood, appli-

cations that rely on SQL Bulk Load APIs, such as the bcp (bulk-copy program) utility, have

to address database columns by their ordinal position. Robust applications can use SQL

metadata to automatically retrieve this information so users on the client-side can con-

tinue to specify the destination columns by name.

Whether it’s for an administrative application, bulk loading, or a dynamic query that

needs to run against several different tables, SQL metadata can provide structure and

definition information for database objects. SQL Server 2005 provides several methods

of retrieving metadata.

■Note Metadata is simply “data that describes data.” SQL Server 2005 databases are “self-describing.”
The data describing the objects, structures, and relationships that comprise the database is stored within the
database itself. This data describing the database design and structure is called metadata.

Catalog Views
Catalog views are the Microsoft-recommended method of retrieving metadata. Catalog

views represent an improvement over methods of retrieving metadata offered by previ-

ous versions of SQL Server. Catalog views provide serverwide metadata for all databases

in a server. There are several different catalog views, which Microsoft conveniently cate-

gorizes for us. Many of the catalog views are geared toward server and database adminis-

tration as opposed to application development. Table 13-1 describes a subset of the SQL

Server 2005 catalog views that are most useful for T-SQL programming and SQL Server

application development.

323

C H A P T E R  1 3

794Xch13final.qxd  3/29/07  4:24 PM  Page 323



Table 13-1. Catalog Views Commonly Used for Application Development

Catalog Views View Type Description

CLR Assembly Catalog Views

sys.assemblies Databasewide Returns a row with the name, assembly_id,
and other descriptive information for each
assembly in the database.

sys.assembly_files Databasewide Returns a row with assembly_id, name,
file_id, and file content for each file that
makes up the assemblies in the database.
INNER JOIN with the sys.assemblies catalog
view on the assembly_id column to get the
assembly names.

sys.assembly_references Databasewide Returns a row with assembly_id and
referenced_assembly_id for each pair of
assemblies that reference one another in the
database. INNER JOIN with the
sys.assemblies catalog view on the
assembly_id column to get the assembly
names.

Databases and Files Catalog Views

sys.backup_devices Serverwide Returns a row with name, type,
type_description, and physical_name for
each backup device registered on a server
with sp_adddumpdevice or through SSMS.

sys.databases Serverwide Returns a row with name, database_id,
owner_sid, creation_date, and other des-
criptive information for each database on 
a server.

sys.database_files Databasewide Returns a row with file_id, type, name,
physical_name, and other metadata for each
database file that corresponds to the current
database.

sys.database_mirroring Serverwide Returns a row with database_id,
mirroring_guid, mirroring_state, and other
mirroring metadata for each database on a
server. If database mirroring is not enabled or
the database is not online, NULLs are returned
for all columns except database_id. INNER
JOIN with the sys.databases catalog view on
the database_id column to get the database
names.

CHAPTER 13 ■ SQL METADATA324

794Xch13final.qxd  3/29/07  4:24 PM  Page 324



Catalog Views View Type Description

sys.database_recovery_status Serverwide Returns the recovery status of each database
on a server. If the database is not started, SQL
Server will attempt to start it. INNER JOIN with
the sys.databases catalog view on the
database_id column to get the database
names. The user must have VIEW ANY
DATABASE permissions, ALTER ANY DATABASE
permissions, CREATE DATABASE permissions in
the master database, or be the owner of a
database to see a row for that database in this
catalog view.

sys.master_files Serverwide Returns a row with database_id, file_id, type,
name, and other descriptive information for
each file corresponding to every database on
a server, as stored in the master database.
INNER JOIN with the sys.databases catalog
view on the database_id column to get the
database names.

Object Catalog Views

sys.allocation_units Databasewide Returns a row with allocation_unit_id, type,
total_pages, used_pages, and other metadata
for each allocation unit in a database.

sys.assembly_modules Databasewide Returns a row containing object_id,
assembly_id, assembly_class,
assembly_method, and other information for
each SQLCLR procedure, function, or trigger
in a database.

sys.check_constraints Databasewide Returns a row with information about each
check constraint in a database, including
columns indicating the parent_column_id of
the check constraint, and whether the check
constraint is disabled, not for replication, not
trusted, and more.

sys.columns Databasewide Returns a row containing object_id, name,
column_id, system_type_id, user_type_id,
and other descriptive information for each
column in all tables, views, table-valued
functions, and other objects that have col-
umns in a database. Use the object_id
column and the OBJECT_ID() function in your
query WHERE clause to narrow the results
down to a single object.

Continued

CHAPTER 13 ■ SQL METADATA 325

794Xch13final.qxd  3/29/07  4:24 PM  Page 325



Table 13-1. Continued

Catalog Views View Type Description

sys.computed_columns Databasewide Returns a row for each column in a database
that is a computed column. The rows
returned contain the same columns as the
sys.columns catalog view plus an additional
column with the definition for the computed
column and bit flags indicating whether the
column is persisted and/or uses the default
database collation. Use the object_id column
and the OBJECT_ID() function in your query
WHERE clause to narrow the results to com-
puted columns of a single object.

sys.default_constraints Databasewide Returns a row for each default constraint in
a database. Each row contains the same col-
umns as the sys.objects catalog view plus
additional columns indicating the
parent_column_id, the constraint definition,
and a bit flag indicating whether the con-
straint name was generated by the system.
Use the parent_object_id column and the
OBJECT_ID() function in your query WHERE
clause to narrow the results to default con-
straints of a single object.

sys.events Databasewide Returns a row containing object_id, type,
type_desc, and a bit flag indicating whether
the event is a trigger or a notification event
for each event that fires a trigger or event
notification in a database. INNER JOIN with
the sys.objects catalog view on the object_id
column to get information about the trigger
or event notification object. INNER JOIN these
results to the sys.objects catalog view again,
on the parent_object_id column, to deter-
mine which database object the trigger or
event notification is tied to.

sys.event_notifications Databasewide Returns a row containing name, object_id,
parent_class, and other metadata for each
event notification object in a database. INNER
JOIN on the sys.objects catalog view on the
parent_id column to get information about
the parent object of the event notification. A
parent_id of 0 means the database itself is the
parent object.

CHAPTER 13 ■ SQL METADATA326

794Xch13final.qxd  3/29/07  4:24 PM  Page 326



Catalog Views View Type Description

sys.extended_procedures Databasewide Returns a row for each extended stored pro-
cedure installed in the database. Each row
contains the same columns as the
sys.objects catalog view plus an additional
column with the dll_name for the extended
stored procedure. Querying
sys.extended_procedures from any database
context other than the master database
results in zero rows being returned.

sys.foreign_keys Databasewide Returns a row for each foreign key constraint
in the database. Each row contains the same
columns as the sys.objects catalog view plus
referenced_object_id, key_index_id, and
other additional columns. INNER JOIN on the
sys.objects catalog view on the
parent_object_id to get information about
the parent object. INNER JOIN on sys.objects
with the referenced_object_id to get informa-
tion about the referenced object.

sys.foreign_key_columns Databasewide Returns a row containing
constraint_object_id, constraint_column_id,
and additional descriptive information for
each column (or set of columns) that com-
pose a foreign key. INNER JOIN with the
sys.foreign_keys catalog view on the con-
straint_object_id column to get information
about the foreign key constraint. Join with
the sys.objects catalog view on the
parent_object_id column or the
referenced_column_id column to get infor-
mation about the parent or referenced
column information, respectively.

sys.fulltext_indexes Databasewide Returns a row containing object_id,
unique_index_id, full_text_catalog_id, and
other metadata for each full-text index in the
database.

sys.fulltext_index_columns Databasewide Returns a row with object_id, column_id,
type_column_id, and language_id for each
column that is part of a full-text index.

sys.identity_columns Databasewide Returns a row for each column that is an
identity column. Each row contains all the
same columns defined in the sys.columns
catalog view plus a seed_value,
increment_value, last_value, and
is_not_for_replication bit flag.

Continued

CHAPTER 13 ■ SQL METADATA 327

794Xch13final.qxd  3/29/07  4:24 PM  Page 327



Table 13-1. Continued

Catalog Views View Type Description

sys.indexes Databasewide Returns a row for each index, clustered index,
or heap of a table, view, or table-valued func-
tion in the database. Each row contains an
object_id, name, index_id, type, and other
descriptive metadata about the index. Use
the object_id column and the OBJECT_ID()
function in your query WHERE clause to narrow
the results to a singular tabular object.

sys.index_columns Databasewide Returns a row for each column that makes up
an index, clustered index, or unordered table
in the database. Columns returned include
object_id, index_id, index_column_id, and
others. INNER JOIN with the sys.tables cata-
log view on the object_id column to retrieve
information about the table the index col-
umns are part of.

sys.key_constraints Databasewide Returns a row for each primary key or unique
constraint in a database. Each row returned
includes all columns from the sys.objects
catalog view plus a unique_index_id and a bit
flag indicating whether the constraint was
named by the system. INNER JOIN with the
sys.tables catalog view on the
parent_object_id column to get information
about the table the constraint is declared on.

sys.numbered_procedures Databasewide Returns a row for each numbered procedure
in a database. This does not include the base
procedure, which is numbered 1. Note that
numbered procedures are deprecated in SQL
Server 2005 and should not be used for future
development.

sys.numbered_procedure_ Databasewide Returns a row for each parameter of all 
parameters numbered procedures in a database. This

does not include the base procedure, num-
bered 1. Numbered procedures are
deprecated in SQL Server 2005 and should
not be used for future development.

sys.objects Databasewide Returns a row for all schema-scoped user-
defined objects in a database. Columns
returned include name, object_id,
principal_id, schema_id, type, and others.
Several other catalog views inherit their
structure from the sys.objects catalog view.
The built-in OBJECT_ID(), OBJECT_NAME(), and
OBJECTPROPERTY() functions can all be used
on objects listed by sys.objects.

CHAPTER 13 ■ SQL METADATA328

794Xch13final.qxd  3/29/07  4:24 PM  Page 328



Catalog Views View Type Description

sys.parameters Databasewide Returns a row with object_id, name,
parameter_id, system_type_id, and other
descriptive metadata for each parameter of
all objects that accept parameters in a data-
base. This catalog view also returns a row for
the return value of scalar user-defined func-
tions.

sys.partitions Databasewide Returns a row containing partition_id,
object_id, index_id, and other descriptive
information for each partition of all tables
and indexes in the database. All tables and
indexes have at least one implicit partition,
even if no partitions are explicitly declared.

sys.procedures Databasewide Returns a row for each procedure in a data-
base, including stored procedures, extended
procedures, replication-filter-procedures,
and SQLCLR procedures. Each row contains
the same columns as sys.objects plus bit
flags that indicate whether the procedure is
autoexecuted, execution of the procedure is
replicated, replication is only done when the
transaction can be serialized, or the proce-
dure skips constraints that are identified as
NOT FOR REPLICATION.

sys.service_queues Databasewide Returns a row for each service queue in a
database. The columns returned are inher-
ited from the sys.objects catalog view, plus
additional columns including max_readers,
activation_procedure,
execute_as_principal_id, and bit flags indi-
cating whether send, receive, enqueue, and
retention are enabled.

sys.sql_dependencies Databasewide Returns a row containing class, class_desc,
object_id, column_id, and other descriptive
information for each dependency on a refer-
enced object. This catalog view is designed to
track database object dependencies on a by-
name basis.

sys.sql_modules Databasewide Returns a row for each SQL language module.
The results include stored procedures,
replication-filter procedures, views, DML
triggers, SQL scalar functions, inline-table-
valued functions, table-valued functions,
rules, and defaults. The rows returned
include object_id, definition,
execute_as_principal_id, and several bit flags
indicating various option settings during the
creation of each module.

Continued

CHAPTER 13 ■ SQL METADATA 329

794Xch13final.qxd  3/29/07  4:24 PM  Page 329



Table 13-1. Continued

Catalog Views View Type Description

sys.stats Databasewide Returns a row containing object_id, name,
stats_id columns, and auto_created,
user_created, and no_recompute bit flag
columns for each statistic of a tabular object,
including tables, views, and table-valued
functions.

sys.stats_columns Databasewide Returns a row with object_id, stats_id,
stats_column_id, and column_id for each
column that is part of a sys.stats statistic for
each tabular object, including tables, views,
and table-valued functions.

sys.synonyms Databasewide Returns a row for each synonym defined in a
database. The columns returned include all
columns from the sys.objects catalog view
plus a base_object_name column.

sys.tables Databasewide Returns a row for each user-defined table in
a database. This catalog view inherits all
columns from the sys.objects catalog view
and adds several additional columns,
including lob_data_space_id,
filestream_data_space_id,
max_column_id_used, text_in_row_limit,
and several additional bit flag columns.

sys.triggers Databasewide Returns a row for each trigger (type TA or TR)
in the database. This includes DDL triggers,
which are not schema-scoped and therefore
not visible in sys.objects. Columns returned
include name, object_id, parent_class,
parent_class_desc, parent_id, and others.

sys.trigger_events Databasewide Returns a row for each event that fires a trig-
ger. Note that this does not include event
notifications, which can be accessed via the
sys.event_notifications catalog view. The
columns returned are inherited from the
sys.events catalog view, with two additional
bit flag columns: is_first and is_last.

sys.views Databasewide Returns a row for each view in the database.
The columns returned inherit from the
sys.objects catalog view, with the addition
of several bit flag columns including
is_replicated, has_replication_filter,
has_opaque_metadata, and others.

CHAPTER 13 ■ SQL METADATA330

794Xch13final.qxd  3/29/07  4:24 PM  Page 330



Catalog Views View Type Description

Scalar Types Catalog Views

sys.assembly_types Databasewide Returns a row for each SQLCLR user-defined
type in a database. This catalog view inherits
its columns from the sys.types catalog view,
with the addition of assembly_id,
assembly_class, is_binary_ordered,
is_fixed_length, and other columns.

sys.types Databasewide Returns a row with name, system_type_id,
user_type_id, schema_id, principal_id, and
other descriptive information for each sys-
tem or user-defined type in a database.

XML Schemas Catalog Views

sys.column_xml_schema_ Databasewide Returns a row containing object_id, 
collection_usage column_id, and xml_collection_id for each

column that is validated by an XML schema.

sys.parameter_xml_schema_ Databasewide Returns a row with object_id, parameter_id, 
collection_usages and xml_collection_id for each parameter

that is validated by an XML schema.

sys.xml_indexes Databasewide Returns one row per XML index in a data-
base. The results returned contain all rows
from the sys.indexes catalog view, plus the
additional columns using_xml_index_id,
secondary_type, and secondary_type_desc.

sys.xml_schema_attributes Databasewide Returns a row for each XML schema
component that is an attribute. Result
columns are inherited from the
sys.xml_schema_components catalog view 
plus the additional is_default_fixed,
must_be_qualified, and default_value
columns.

sys.xml_schema_collections Databasewide Returns a row containing
xml_schema_collection_id, schema_id,
principal_id, name, create_date, and
modify_date columns for each XML schema
collection.

sys.xml_schema_component_ Databasewide Returns a row with xml_component_id, 
placements placement_id, placed_xml_component_id,

and additional descriptive metadata columns
for each placement for XML schema
components.

sys.xml_schema_components Databasewide Returns a row containing
xml_component_id, xml_collection_id,
xml_namespace_id, name, and additional
descriptive information columns for each
component of XML schemas in a database.

Continued

CHAPTER 13 ■ SQL METADATA 331

794Xch13final.qxd  3/29/07  4:24 PM  Page 331



Table 13-1. Continued

Catalog Views View Type Description

sys.xml_schema_elements Databasewide Returns a row for each schema element that
is a Type, symbol space E. The results inherit
columns from the
sys.xml_schema_components catalog view,
plus additional columns, including
default_value, is_default_fixed, is_nillable,
and several other bit flag columns indicating
the various options that can be set for these
schema elements.

sys.xml_schema_facets Databasewide Returns a row for each facet of xml type defi-
nitions. Facet is an XML term for a restriction
on content. The columns returned include
xml_component_id, facet_id, kind,
kind_desc, is_fixed, and value.

sys.xml_schema_model_groups Databasewide Returns a row for each schema element that
is a Model-Group, symbol space M. The results
returned include all columns from the
sys.xml_schema_components catalog view plus
the additional columns compositor and
compositor_desc.

sys.xml_schema_namespaces Databasewide Returns a row containing xml_collection_id,
name, and xml_namespace_id columns for
each XSD-defined XML namespace.

sys.xml_schema_types Databasewide Returns a row for each XML schema compo-
nent that is a Type, symbol space T. The
results returned include all columns from the
sys.xml_schema_components catalog view plus
additional bit flag columns indicating various
settings of the Type.

sys.xml_schema_wildcard_ Databasewide Returns a row with xml_component_id and 
namespaces namespace for each enumerated namespace

of XML wildcards.

sys.xml_schema_wildcards Databasewide Returns a row for each XML schema compo-
nent that is an Attribute-Wildcard (symbol
space N, kind of V) or an Element-Wildcard
(symbol space N, kind of W). The result
columns are inherited from
sys.xml_schema_components with the
additional columns process_content,
process_content_desc, and
disallow_namespaces.

CHAPTER 13 ■ SQL METADATA332

794Xch13final.qxd  3/29/07  4:24 PM  Page 332



■Note In addition to the catalog views listed in Table 13-1, which are commonly used in application devel-
opment, SQL Server 2005 includes dozens of additional catalog views, dynamic management views, and
replication views. These additional views are useful for specific database and server administrative/
management functions, but the focus of this section is application development, and the world of server
administration and management is a book unto itself. BOL provides good starter information on the addi-
tional catalog views, dynamic management views, and replication views available in SQL Server. This
information can be found online at http://msdn2.microsoft.com/en-us/library/ms177862.aspx.

As an example of how these catalog views might be used, consider the previous

suggestion of a bulk-loading application. The Bulk Load APIs require that target

columns be referenced by number, but there are some disadvantages to this approach:

• Being a T-SQL developer, it’s a safe bet that you are used to specifying columns 

by name, not number.

• A simple schema change, such as dropping a column or rebuilding a table, can

change the ordinal position numbers of the columns, causing all kinds of

problems.

• Using column numbers instead of names means that you have to hard-wire the

numbers into your application, tying it to the structure of a very specific table.

This means it will be useless as a general-purpose tool for multiple tables.

Using sys.columns, your application can dynamically determine the column names

and their associated numbers with a simple query like the sample in Listing 13-1.

Listing 13-1. Using sys.columns Catalog View

USE AdventureWorks;

GO

SELECT c.name, c.column_id

FROM sys.columns c

WHERE c.object_id = OBJECT_ID('Person.Contact')

ORDER BY c.column_id;

The results of this query look like Figure 13-1.

CHAPTER 13 ■ SQL METADATA 333

794Xch13final.qxd  3/29/07  4:24 PM  Page 333



In addition to the column_id number, or ordinal position of each column, other

information such as the data type, precision and scale, collation, and default can all be

retrieved from the sys.columns catalog view, providing an opportunity to make bulk load-

ing and other dynamic applications even more robust. Even more information can be

gathered by joining the sys.columns catalog view against other catalog views such as

sys.objects and sys.tables. Listing 13-2 demonstrates using the sys.tables and

sys.columns catalog views to retrieve column and table information.

Listing 13-2. Joining sys.schemas, sys.tables, and sys.columns

USE AdventureWorks;

GO

SELECT s.name AS Schema_Name,

t.name AS Table_Name,

c.name AS Column_Name,

c.column_id

FROM sys.schemas s

INNER JOIN sys.tables t

ON s.schema_id = t.schema_id

INNER JOIN sys.columns c

ON t.object_id = c.object_id

WHERE s.name = N'Person'

AND t.name = N'Contact'

ORDER BY c.column_id;

CHAPTER 13 ■ SQL METADATA334

Figure 13-1. Results of query in Listing 13-1

794Xch13final.qxd  3/29/07  4:24 PM  Page 334



This query joins the sys.schemas catalog view to the sys.tables catalog view on the

schema_id column, and also joins the sys.tables catalog view to the sys.columns catalog

view on the object_id column. The WHERE clause narrows the result down to the schema

named Person and the table named Contact. The results are shown in Figure 13-2.

Catalog views present an excellent way (and indeed, the recommend way) to dynam-

ically retrieve metadata from SQL Server. Catalog views are the preferred method for

accessing SQL Server 2005 metadata since they provide the most detailed SQL Server–

specific information of any of the available methods for retrieving metadata.

INFORMATION_SCHEMA Views
INFORMATION_SCHEMA views provide another method of retrieving metadata in SQL Server

2005. Defined by the SQL-92 standard, INFORMATION_SCHEMA views provide the advantage of

being cross-platform compatible with other SQL-92–compliant database platforms. One

of the major disadvantages is that they do not give platform-specific metadata like

SQLCLR assembly information. Also, unlike some of the catalog views that are server-

wide, all INFORMATION_SCHEMA views are database-specific. The INFORMATION_SCHEMA views

are listed in Table 13-2.

CHAPTER 13 ■ SQL METADATA 335

Figure 13-2. Result of Listing 13-2

794Xch13final.qxd  3/29/07  4:24 PM  Page 335



Table 13-2. INFORMATION_SCHEMA Views List

Name Description

CHECK_CONSTRAINTS Returns a row of descriptive information for each check constraint in
the current database.

COLUMN_DOMAIN_USAGE Returns a row of metadata for each column in the current database that
has an alias data type.

COLUMN_PRIVILEGES Returns a row of information for each column in the current database
with a privilege that has been granted by, or granted to, the current user
of the database.

COLUMNS Returns descriptive information for each column that can be accessed
by the current user in the current database.

CONSTRAINT_COLUMN_USAGE Returns one row of metadata for each column in the current database
that has a constraint defined on it, on each table-type object for which
the current user has permissions.

CONSTRAINT_TABLE_USAGE Returns one row of information for each table in the current database
that has a constraint defined on it, for which the current user has
permissions.

DOMAIN_CONSTRAINTS Returns a row of descriptive information for each alias data type in the
current database that the current user can access, and which has a rule
bound to it.

DOMAINS Returns a row of descriptive metadata for each alias data type in the
current data type that the current user can access.

KEY_COLUMN_USAGE Returns a row of metadata for each column that is constrained by a key,
for which the current user has permissions, in the current database.

PARAMETERS Returns a row of descriptive information for each parameter for all
user-defined functions and stored procedures that can be accessed by
the current user in the current database. For user-defined functions the
results also contain a row with return value information.

REFERENTIAL_CONSTRAINTS Returns a row of metadata for each FOREIGN KEY constraint defined in
the current database, on objects for which the current user has
permissions.

ROUTINE_COLUMNS Returns a row of descriptive information for each column returned 
by table-valued functions defined in the current database. This
INFORMATION_SCHEMA view only returns information about TVFs for
which the current user has access.

ROUTINES Returns a row of metadata for each stored procedure and function in
the current database that is accessible to the current user.

SCHEMATA Returns a row of information for each schema defined in the current
database.

TABLE_CONSTRAINTS Returns a row of metadata for each table constraint in the current data-
base, on table-type objects for which the current user has permissions.

TABLE_PRIVILEGES Returns a row of descriptive metadata for each table privilege that is
either granted by, or granted to, the current user in the current
database.

CHAPTER 13 ■ SQL METADATA336

794Xch13final.qxd  3/29/07  4:24 PM  Page 336



Name Description

TABLES Returns a row of metadata for each table in the current database for
which the current user has permissions.

VIEW_COLUMN_USAGE Returns a row of information for each column in the current database
that is used in a view definition, on objects for which the current user
has permissions.

VIEW_TABLE_USAGE Returns a row of information for each table in the current database, for
which the current user has permissions, that is used in a view.

VIEWS Returns a row of metadata for each view in the current database that
can be accessed by the current user.

■Note Some of the changes in SQL Server 2005 can break backward-compatibility with SQL Server 2000
or SQL Server 7.0 INFORMATION_SCHEMA views and applications that rely on them. Also note that SQL
Server 6.5 and earlier did not implement INFORMATION_SCHEMA views. Check BOL for specific change infor-
mation at http://msdn2.microsoft.com/en-us/library/ms186778.aspx if your application uses
INFORMATION_SCHEMA and requires backward-compatibility.

You could easily convert the example in Listing 13-1 to use the INFORMATION_SCHEMA.

COLUMNS view instead of sys.columns. This is demonstrated in Listing 13-3.

Listing 13-3. Using INFORMATION_SCHEMA.COLUMNS View

USE AdventureWorks;

GO

SELECT c.Column_Name, c.Ordinal_Position

FROM Information_Schema.Columns c

WHERE c.Table_Schema = 'Person'

AND c.Table_Name = 'Contact'

ORDER BY c.Ordinal_Position;

INFORMATION_SCHEMA views are useful for applications that require cross-platform or

high levels of ANSI compatibility. Because they are ANSI compliant, INFORMATION_SCHEMA

views do not report a lot of platform-specific metadata, such as SQLCLR assembly meta-

data and SQL Server-specific data type information.

CHAPTER 13 ■ SQL METADATA 337

794Xch13final.qxd  3/29/07  4:24 PM  Page 337



Compatibility Views
SQL Server 2005 provides yet another set of views to retrieve metadata, known as com-

patibility views. Compatibility views are provided for backward-compatibility only, and

Microsoft recommends replacing references to them with catalog views as soon as possi-

ble. The following is a list of the SQL Server 2005 compatibility views:

• sysallocunits • sysasymkeys

• sysbinobjs • sysbinsubobjs

• syscerts • syschildinsts

• sysclsobjs • syscolpars

• sysconvgroup • sysdbfiles

• sysdbreg • sysdercv

• sysdesend • sysendpts

• sysfiles1 • sysftinds

• sysguidrefs • syshobtcolumns

• syshobts • sysidxstats

• sysiscols • syslnklgns

• syslogshippers • sysmultiobjrefs

• sysnsobjs • sysobjkeycrypts

• sysobjvalues • sysowners

• sysprivs • sysqnames

• sysremsvcbinds • sysrmtlgns

• sysrowsetcolumns • sysrowsetrefs

• sysrowsets • sysrts

CHAPTER 13 ■ SQL METADATA338

794Xch13final.qxd  3/29/07  4:24 PM  Page 338



• sysscalartypes • sysschobjs

• sysserefs • syssingleobjrefs

• syssqlguides • systypedsubobjs

• sysusermsgs • syswebmethods

• sysxlgns • sysxmitqueue

• sysxmlcomponent • sysxmlfacet

• sysxmlplacement • sysxprops

• sysxsrvs

The previous example of retrieving column names and numbers can be performed

using the syscolumns compatibility view as well. Listing 13-4 provides a sample.

Listing 13-4. Using the syscolumns Compatibility View

USE AdventureWorks;

GO

SELECT c.name, c.colid

FROM dbo.syscolumns c

WHERE c.id = OBJECT_ID('Person.Contact')

ORDER BY c.colid;

As previously mentioned, the compatibility views are provided for backward-

compatibility with previous versions of SQL Server only. As such, you can expect them

to be removed in a future version of SQL Server. Don’t use them for new development;

and convert your upgraded scripts to use catalog views as soon as possible.

CHAPTER 13 ■ SQL METADATA 339

794Xch13final.qxd  3/29/07  4:24 PM  Page 339



System Stored Procedures
SQL Server 2005 implements system stored procedures to support ODBC data dictionary

functions. The system stored procedures supported are listed in Table 13-3.

Table 13-3. System Stored Procedures to Retrieve Metadata

System Stored Procedure Description

sp_column_privileges Returns column privileges for a single table

sp_columns Returns column information for one or more specified tables or views

sp_databases Returns a list of databases that exist on, or are accessible through, the
SQL Server

sp_fkeys Returns foreign key information for a specified table

sp_pkeys Returns primary key information for a specified table

sp_server_info Returns information about a SQL Server instance

sp_special_columns Returns the set of columns that uniquely identify rows in a table

sp_sproc_columns Returns column information for a stored procedure or user-defined
function

sp_statistics Returns a list of all indexes and statistics on a table or indexed view

sp_stored_procedures Returns a list of stored procedures, user-defined functions, and
extended procedures

sp_table_privileges Returns a list of table permissions for one or more specified tables

sp_tables Returns a list of all objects that can be queried—that is, all objects that
can appear in the FROM clause of a query

Listing 13-5 demonstrates using the sp_columns system stored procedure to retrieve

column information for a table.

Listing 13-5. Using sp_columns System Stored Procedure

USE AdventureWorks;

GO

EXECUTE dbo.sp_columns @table_owner = 'Person', @table_name = 'Contact';

The results are shown in Figure 13-3.

CHAPTER 13 ■ SQL METADATA340

794Xch13final.qxd  3/29/07  4:24 PM  Page 340



Summary
This chapter covered SQL Server 2005 metadata views and stored procedures:

• Catalog views, which are new to SQL Server 2005 and are the preferred method of

retrieving SQL Server metadata

• INFORMATION_SCHEMA views, which provide an ANSI-compliant method for retriev-

ing metadata, though they provide less platform-specific information than

catalog views

• Backward-compatible compatibility views, which should be upgraded to catalog

views as soon as possible

• System stored procedures, which are used by system drivers to retrieve metadata

SQL Server 2005 provides more options for retrieving database and system meta-

data than any prior SQL Server release. The self-describing nature of SQL Server data-

bases and database objects, and the SQL Server metadata catalog views, make it

particularly easy to create administrative tools or any other type of application that

needs to know database and database object structures and properties.

The next chapter discusses one of the newest tools for SQL Server programming,

SQLCLR.

CHAPTER 13 ■ SQL METADATA 341

Figure 13-3. Results of sp_columns on Person.Contact table

794Xch13final.qxd  3/29/07  4:24 PM  Page 341



794Xch13final.qxd  3/29/07  4:24 PM  Page 342



SQLCLR Programming

One of the most prominent new enhancements to SQL Server 2005 is the integrated

SQLCLR. The SQLCLR is a SQL Server–specific version of the .NET Common Language

Runtime that allows you to run .NET code in the database. SQLCLR programming is a

broad subject that could easily fill an entire book, and in fact it does. Pro SQL Server 2005

Assemblies by Robin Dewson and Julian Skinner (Apress, 2005) is an excellent resource for

in-depth coverage of SQLCLR programming. This chapter will discuss the methods used

to extend SQL Server functionality in the past and explain the basics of the new SQLCLR

programming model.

The Old Way
In previous versions of SQL Server, developers could extend SQL Server functionality by

writing extended stored procedures. Writing high-quality extended stored procedures

requires a strong knowledge of the Open Data Services (ODS) library and the poorly doc-

umented C-style Extended Stored Procedure API. Anyone who’s ever attempted the old

style of extended stored procedure programming can tell you it’s a complex undertaking,

where a single misstep can easily result in memory leaks and/or corruption of the SQL

Server process space. Also the threading model used by extended stored procedures

requires SQL Server to rely on the operating system to control threading and concur-

rency. This can also lead to issues, such as unresponsiveness of extended stored

procedure code.

■Caution Extended stored procedures have been deprecated in SQL Server 2005. Use the SQLCLR
instead of extended stored procedures for SQL Server 2005 development.

Earlier SQL Server releases allowed you to create OLE Automation server objects via

the sp_OACreate stored procedure. Creating OLE Automation servers can be just as com-

plex as extended stored procedure programming (if not more so). The sp_OACreate

method is also notorious for memory leaks. 343

C H A P T E R  1 4

794Xch14final.qxd  3/29/07  4:22 PM  Page 343



Another option in previous versions of SQL Server was to code all business logic

exclusively in business objects that were physically and logically separate from the data-

base. While this method is preferred by many developers and administrators, it can result

in extra network traffic and a less robust security model than can be achieved through

tight integration with SQL Server security.

The SQLCLR Way
The introduction of the SQLCLR programming model in SQL Server 2005 provides

several advantages over the older methods of extending SQL Server functionality via

extended stored procedures, OLE Automation, or external business objects. These

advantages include the following:

• Your managed codebase runs on the SQLCLR .NET Framework, which is tightly

integrated into SQL Server itself. This means that SQL Server can properly manage

threading, memory usage, and other resources accessed via SQLCLR code.

• The tight integration of the SQLCLR into SQL Server means that SQL Server can

provide a robust security model for running code, and maintain stricter control

over database objects and external resources accessed by the SQLCLR code.

• The SQLCLR is more thoroughly documented in more places than the Extended

Stored Procedure API ever was (or presumably ever will be).

• The SQLCLR does not tie you to the C language–based Extended Stored Procedure

API. In theory the SQLCLR programming model does not tie you to any one spe-

cific language (although Microsoft currently supports only VB 2005, C#, and C++

SQLCLR programming).

• The SQLCLR allows access to all of the familiar .NET namespaces, data types, and

managed objects.

• The SQLCLR introduces SQL Server–specific namespaces that allow direct access

to the underlying SQL Server databases and resources, which can be used to limit

or reduce network traffic generated by using external business objects.

There’s a misperception in some quarters that the SQLCLR is a replacement for

T-SQL altogether. I can’t speak with authority about Microsoft’s plans for the future, but

as it stands now the SQLCLR is not a replacement for T-SQL, but rather a supplement that

works hand-in-hand with T-SQL to make SQL Server 2005 more powerful than ever. So

when should you use SQLCLR code in your database? There are no hard and fast rules

concerning this, but here are some general guidelines:

CHAPTER 14 ■ SQLCLR PROGRAMMING344

794Xch14final.qxd  3/29/07  4:22 PM  Page 344



• Existing extended stored procedures on older versions of SQL Server are excellent

candidates for conversion to SQL Server 2005 SQLCLR assemblies, that is, if the

functionality provided isn’t already part of SQL Server 2005 T-SQL (i.e., encryption).

• Code that accesses external server resources, such as calls to xp_cmdshell, are also

excellent candidates for conversion to the more secure SQLCLR assemblies.

• T-SQL code that performs a lot of complex calculations and string manipulations

can make strong candidates for conversion to SQLCLR assemblies primarily

because procedural compiled code can often outperform T-SQL in these areas.

• Highly procedural code with a lot of processing steps might be considered for

conversion.

• Clients that pull a lot of data across the wire and perform a lot of processing on

that data might be considered for conversion. You might first consider these busi-

ness objects for conversion to T-SQL stored procedures, especially if they don’t

perform a lot of processing on the data in question.

Here are some general guidelines for items that should not be converted to SQLCLR

assemblies:

• Clients that pull small amounts of data across the wire, or that pull a lot of data

across the wire but perform no processing on that data, are good candidates for

conversion to T-SQL stored procedures instead of SQLCLR assemblies.

• T-SQL code and stored procedures that do not perform complex calculations and

string manipulations should not be converted to SQLCLR assemblies.

• T-SQL can be expected to always perform set-based operations on data stored in

the database faster than the SQLCLR.

As with T-SQL stored procedures, the decision to use the SQLCLR in your databases,

and to what extent, depends on your organizational policies and procedures. The recom-

mendations I present here are guidelines of instances that make good business cases for

conversion of existing code and creation of new code.

SQLCLR Assemblies
SQLCLR exposes .NET managed code to SQL Server via assemblies. An assembly is com-

piled into a .NET managed code dynamic link library (DLL), which can then be registered

with SQL Server using the CREATE ASSEMBLY statement. Publicly accessible members of

CHAPTER 14 ■ SQLCLR PROGRAMMING 345

794Xch14final.qxd  3/29/07  4:22 PM  Page 345



classes within the assemblies are then referenced in the appropriate CREATE statements,

which are described later in this section.

Creating a SQLCLR assembly requires the following:

• Designing and programming a .NET class(es) that publicly exposes the appropriate

members

• Compiling the .NET class(es) into managed code DLL manifest files containing the

assembly

• Registering the assemblies with SQL Server via the CREATE ASSEMBLY statement

• Registering the appropriate assembly members via the appropriate CREATE

FUNCTION, CREATE PROCEDURE, CREATE TYPE, CREATE TRIGGER, or CREATE AGGREGATE

statements

The SQLCLR provides additional SQL Server–specific namespaces, classes, and

attributes to facilitate assembly programming. Visual Studio 2005 also includes a new

SQL Server Project project type that assists in quickly creating assemblies. To create a

new assembly using Visual Studio 2005, do the following:

1. Select File ➤ New Project from the menu.

2. Select your .NET language of choice (currently supported languages are Visual

Basic, C#, and Visual C++) and choose the SQL Server Project installed template

from the Database submenu of the New Project dialog, as shown in Figure 14-1.

CHAPTER 14 ■ SQLCLR PROGRAMMING346

Figure 14-1. Visual Studio 2005 New Project dialog

794Xch14final.qxd  3/29/07  4:22 PM  Page 346



3. You will be prompted with a dialog to select a database connection for the project,

as shown in Figure 14-2. You may be prompted to turn on SQLCLR debugging for

the connection. This is required if you want to test your assemblies in Debug

mode.

4. Next highlight the project name in the Solution Explorer pane and right-click.

Then choose a type of SQLCLR item to add to the solution (User-Defined

Function, Stored Procedure, etc.), as shown in Figure 14-3.

5. Visual Studio will automatically generate a template for the item you select in the

language of your choice, complete with the appropriate Imports statements (using

in C#).

CHAPTER 14 ■ SQLCLR PROGRAMMING 347

Figure 14-2. Add Database Reference dialog

794Xch14final.qxd  3/29/07  4:22 PM  Page 347



In addition to the standard .NET namespaces and classes, the SQLCLR implements

some SQL Server–specific namespaces and classes to simplify interfacing your code with

SQL Server. Some of the most commonly used namespaces include the following:

• The System namespace, which includes the base .NET data types and the Object

class from which all .NET classes inherit

• The System.Data namespace, which contains the DataSet class and other classes

for ADO.NET data management

• The System.Data.SqlClient namespace, which contains the SQL Server–specific

ADO.NET data provider

• The Microsoft.SqlServer.Server namespace, which contains the SqlContext and

SqlPipe classes that allow assemblies to communicate with SQL Server

• The System.Data.SqlTypes namespace, which contains SQL Server data types,

which is important because (unlike the standard .NET data types) these types can

be set to SQL NULL

CHAPTER 14 ■ SQLCLR PROGRAMMING348

Figure 14-3. Adding a new SQLCLR item to your project

794Xch14final.qxd  3/29/07  4:22 PM  Page 348



Once the assembly is created and compiled, it is registered with SQL Server via the

CREATE ASSEMBLY statement:

CREATE ASSEMBLY assembly_name

[ AUTHORIZATION owner_name ]

FROM { <client_assembly_specifier> | <assembly_bits> [ , ... n ] }

[ WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE } ] ;

The CREATE ASSEMBLY statement requires you to specify the following:

• The assembly_name is a valid SQL Server identifier and must be unique within the

database.

• The owner_name is the name of a user or role to designate as the owner of the

assembly. If AUTHORIZATION is specified, the current user must be a member of

the role specified or have IMPERSONATE permissions for the user specified. If the

AUTHORIZATION clause is left out, the default is the current user.

• The client_assembly_specifier is a full local or UNC network path to the DLL

manifest file containing the assembly. This option cannot be specified if the cur-

rent logged-in user is being impersonated.

• Assembly_bits represents the binary value of the assembly (as a varbinary), and

can be used instead of client_assembly_specifier. Assembly_bits is the assembly

and its dependent assemblies.

• The WITH PERMISSION_SET clause specifies a set of code access permissions to grant

the assembly.

• The SAFE permission set is the most restrictive and prevents the assembly from

accessing system resources outside of SQL Server. SAFE is the default.

• EXTERNAL_ACCESS allows assemblies to access some external resources, such as

files, network, the registry, and environment variables.

• UNSAFE permission allows assemblies unlimited access to external resources,

including the ability to execute unmanaged code.

SQLCLR User-Defined Functions
SQLCLR user-defined functions can return scalar values or tablelike result sets. SQLCLR

user-defined functions that return scalar values are similar to standard .NET functions.

A SQLCLR function requires that you apply the SqlFunction attribute to the main function

CHAPTER 14 ■ SQLCLR PROGRAMMING 349

794Xch14final.qxd  3/29/07  4:22 PM  Page 349



as shown in Listing 14-1. I explain more about the SqlFunction attribute later in this

section. Listing 14-1 demonstrates a sample scalar user-defined function that accepts

a value representing a temperature in degrees Fahrenheit and converts it to degrees

Celsius.

Listing 14-1. Sample SQLCLR User-Defined Function Temperature Converter

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Namespace APress.Samples

Partial Public Class Sql

<SqlFunction(DataAccess:=DataAccessKind.None, _

IsDeterministic:=True)> _

Public Shared Function Fahrenheit2Celsius(ByVal f As SqlDouble) As SqlDouble

Dim c As New SqlDouble

c = (5.0 / 9.0) * (f - 32.0)

Return c

End Function

End Class

End Namespace

The first part of the listing is standard SQLCLR boilerplate; it specifies the required

namespaces to import:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Next the code designates a namespace; in this case I’ve decided to call it 

APress.Samples:

Namespace APress.Samples

Then the class is declared. Microsoft .NET 2.0 introduces the concept of partial

classes, allowing you to break up the declaration of a single class into multiple source

files. While there is only a single source file, it’s the code that Visual Studio generates

automatically—and it doesn’t hurt anything:

CHAPTER 14 ■ SQLCLR PROGRAMMING350

794Xch14final.qxd  3/29/07  4:22 PM  Page 350



Partial Public Class Sql

The Public Shared (public static for C#) function is then declared. The SqlFunction

attribute is applied with two attributes set. The DataAccess attribute is set to

DataAccessKind.None, indicating the function does not read data from system tables using

the in-process data provider. The IsDeterministic function is set to True to indicate that

the function is deterministic in nature:

<SqlFunction(DataAccess:=DataAccessKind.None, _

IsDeterministic:=True)> _

Public Shared Function Fahrenheit2Celsius(ByVal f As SqlDouble) As SqlDouble

Dim c As New SqlDouble

c = (5.0 / 9.0) * (f - 32.0)

Return c

End Function

The function itself accepts a SqlDouble Fahrenheit temperature, then calculates and

returns a SqlDouble Celsius temperature.

■Tip It’s considered best practice to use the SQL Server data types for parameters and return values
(i.e., SqlDouble, SqlInt32, SqlString, etc.). Standard .NET data types have no concept of NULL and will
error out if a NULL value is passed in as a parameter, calculated within the function, or returned from the
function.

After the assembly is installed via the CREATE ASSEMBLY statement, the function is set

up with the CREATE FUNCTION statement with the EXTERNAL NAME option:

CREATE FUNCTION dbo.Fahrenheit2Celsius (@f FLOAT)

RETURNS FLOAT

WITH EXECUTE AS CALLER

AS

EXTERNAL NAME

Fahrenheit2Celsius.[Fahrenheit2Celsius.APress.Samples.Sql].Fahrenheit2Celsius

GO

At this point the function can be called like any other user-defined function:

SELECT dbo.Fahrenheit2Celsius(100.0);

CHAPTER 14 ■ SQLCLR PROGRAMMING 351

794Xch14final.qxd  3/29/07  4:22 PM  Page 351



■Tip You can automate the process of compiling your assembly, registering it with SQL Server, and
installing the SQLCLR user-defined function with Visual Studio’s Build ➤ Deploy. You can also test the 
SQLCLR user-defined function with the Visual Studio Debug ➤ Start Debugging option.

As mentioned previously, SQLCLR user-defined functions also allow table-style

results to be returned to the caller. Table-valued SQLCLR user-defined functions are 

a little more complex, as demonstrated in Listing 14-2.

Listing 14-2. Retrieving Yahoo RSS Feed Top News Stories

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Xml

Imports System.Runtime.InteropServices

Namespace APress.Samples

Partial Public Class Sql

<SqlFunction(IsDeterministic:=False, _

DataAccess:=DataAccessKind.None, _

TableDefinition:="title nvarchar(256), link nvarchar(256), " & _

"pubdate datetime, description nvarchar(max)", _

FillRowMethodName:="GetRow")> _

Public Shared Function GetYahooNews() As IEnumerable

Dim xmlsource As New _

XmlTextReader("http://rss.news.yahoo.com/rss/topstories")

Dim newsxml As New XmlDocument

newsxml.Load(xmlsource)

xmlsource.Close()

Return newsxml.SelectNodes("//rss/channel/item")

End Function

Private Shared Sub GetRow(ByVal o As Object, _

<Out()> ByRef title As SqlString, _

<Out()> ByRef link As SqlString, _

<Out()> ByRef pubdate As SqlDateTime, _

<Out()> ByRef description As SqlString)

CHAPTER 14 ■ SQLCLR PROGRAMMING352

794Xch14final.qxd  3/29/07  4:22 PM  Page 352



Dim element As XmlElement

element = DirectCast(o, XmlElement)

title = element.SelectSingleNode("./title").InnerText

link = element.SelectSingleNode("./link").InnerText

pubdate = CType(element.SelectSingleNode("./pubDate").InnerText, _

DateTime)

description = element.SelectSingleNode("./description").InnerText

End Sub

End Class

End Namespace

This example retrieves the Yahoo Top News Stories RSS feed and returns the result

as a table. Before we step through the source listing, we need to address security since

this function accesses the Internet. Because the function needs to access an external

resource, it requires EXTERNAL_ACCESS permissions. In order to deploy a nonsafe assembly,

one of two sets of conditions must be met:

• The database must be marked TRUSTWORTHY, and the user installing the assembly

must have EXTERNAL_ACCESS ASSEMBLY or UNSAFE ASSEMBLY permission.

• The assembly must be signed with an asymmetric key or certificate associated 

with a login that has proper permissions.

To meet the first set of requirements, do the following:

• Execute the ALTER DATABASE AdventureWorks SET TRUSTWORTHY ON; statement.

• In Visual Studio, select Project Properties ➤ Database and change the Permission

Level to External.

This code listing also begins with the Imports statements. This function requires 

the addition of the System.Xml namespace in order to parse the RSS feed, and

System.Runtime.InteropServices in order to use the <Out()> attribute on parameters in 

the fill-row method, described later in this section:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Xml

Imports System.Runtime.InteropServices

CHAPTER 14 ■ SQLCLR PROGRAMMING 353

794Xch14final.qxd  3/29/07  4:22 PM  Page 353



Like the previous example, this one declares the APress.Samples namespace and the

public Sql partial class:

Namespace APress.Samples

Partial Public Class Sql

The primary public function again requires the SqlFunction attribute be declared.

This time there are several additional attributes that need to be declared with it:

<SqlFunction(IsDeterministic:=False, _

DataAccess:=DataAccessKind.None, _

TableDefinition:="title nvarchar(256), link nvarchar(256), " & _

"pubdate datetime, description nvarchar(max)", _

FillRowMethodName:="GetRow")> _

The IsDeterministic attribute is set to False this time since the contents of the RSS

feed are not deterministic. Anytime you rely on an external source for your data, the

results will most likely be nondeterministic. Since the function does not read data from

system tables using the in-process data provider, the DataAccess attribute is set to

DataAccessKind.None. The SQLCLR table-valued function requires the additional

TableDefinition attribute, which defines the structure of the result set. It also needs the

FillRowMethodName attribute, which designates the fill-row method. The fill-row method

is a user method that converts each element of an IEnumerable object into a SQL Server

result set row:

Public Shared Function GetYahooNews() As IEnumerable

Dim xmlsource As New _

XmlTextReader("http://rss.news.yahoo.com/rss/topstories")

Dim newsxml As New XmlDocument

newsxml.Load(xmlsource)

xmlsource.Close()

Return newsxml.SelectNodes("//rss/channel/item")

End Function

The public function is declared to return an IEnumerable result. This particular

function opens an XmlTextReader that retrieves the Yahoo Top News Stories RSS feed

and loads it into an XmlDocument. It then uses the SelectNodes method to retrieve the

news story summaries from the RSS feed. The SelectNodes method returns an

XmlNodeList, which implements IEnumerable. The fill-row method is fired once for each

element of the XmlNodeList:

CHAPTER 14 ■ SQLCLR PROGRAMMING354

794Xch14final.qxd  3/29/07  4:22 PM  Page 354



Private Shared Sub GetRow(ByVal o As Object, _

<Out()> ByRef title As SqlString, _

<Out()> ByRef link As SqlString, _

<Out()> ByRef pubdate As SqlDateTime, _

<Out()> ByRef description As SqlString)

Dim element As XmlElement

element = DirectCast(o, XmlElement)

title = element.SelectSingleNode("./title").InnerText

link = element.SelectSingleNode("./link").InnerText

pubdate = CType(element.SelectSingleNode("./pubDate").InnerText, _

DateTime)

description = element.SelectSingleNode("./description").InnerText

End Sub

End Class

End Namespace

The GetRow method is declared as a Visual Basic Sub that returns no value. The

method communicates with SQL Server via its parameters. The first parameter is an

Object passed by value; in this case it will be an XmlElement. The remaining parameters

correspond to the columns of the result set. These parameters are passed by reference

and should have the <Out()> attribute applied to them as shown. The sample GetRow

method casts the first parameter to an XmlElement. It then uses the SelectSingleNode

method and InnerText property to retrieve the proper text from individual child nodes

of the XmlElement, assigning each to the proper columns of the result set along the way.

The SQLCLR table-valued function can be called like this:

SELECT title, link, pubdate, description

FROM dbo.GetYahooNews();

The results are similar to Figure 14-4.

CHAPTER 14 ■ SQLCLR PROGRAMMING 355

Figure 14-4. Sample GetYahooNews function results

794Xch14final.qxd  3/29/07  4:22 PM  Page 355



SQLCLR Stored Procedures
SQLCLR stored procedures provide an alternative to extend SQL Server functionality

when T-SQL stored procedures just won’t do. Of course, like other SQLCLR functionality,

there is a certain amount of overhead involved with SQLCLR stored procedures, and you

can expect them to be less efficient than comparable T-SQL code for set-based opera-

tions. On the other hand, if you need to access .NET functionality or external resources,

or have code that is computationally intensive, SQLCLR stored procedures can provide

an excellent choice.

Listing 14-3 shows how to use the SQLCLR to retrieve operating system environment

variables and return them as a recordset via stored procedure.

Listing 14-3. Retrieving Environment Variables with a SQLCLR Stored Procedure

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Namespace APress.Samples

Partial Public Class Sql

<SqlProcedure()> _

Public Shared Sub GetEnvironmentVars()

Try

Dim environmentList As New SortedList

For Each de As DictionaryEntry In _

Environment.GetEnvironmentVariables()

environmentList(de.Key) = de.Value

Next

Dim record As New SqlDataRecord( _

New SqlMetaData("VarName", SqlDbType.NVarChar, 1024), _

New SqlMetaData("VarValue", SqlDbType.NVarChar, 4000))

SqlContext.Pipe.SendResultsStart(record)

For Each de As DictionaryEntry In environmentList

record.SetValue(0, de.Key)

record.SetValue(1, de.Value)

SqlContext.Pipe.SendResultsRow(record)

Next

SqlContext.Pipe.SendResultsEnd()

CHAPTER 14 ■ SQLCLR PROGRAMMING356

794Xch14final.qxd  3/29/07  4:22 PM  Page 356



Catch ex As Exception

SqlContext.Pipe.Send(ex.Message)

End Try

End Sub

End Class

End Namespace

As with the other SQLCLR assemblies, appropriate namespaces are imported at 

the top:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Like the other SQLCLR assemblies, I’m declaring the APress.Samples namespace and

the Sql partial class:

Namespace APress.Samples

Partial Public Class Sql

The GetEnvironmentVars method is declared as a public Sub (void function in C#). 

The SqlProcedure() attribute is applied to the function to indicate to SQL Server that this

is a SQLCLR stored procedure:

<SqlProcedure()> _

Public Shared Sub GetEnvironmentVars()

The body of the stored procedure is wrapped in a Try...Catch block to capture any

.NET errors. As the procedure begins, all of the environment variable names and their

values are copied from the .NET Hashtable returned by the Environment.

GetEnvironmentVariables() functions to a .NET SortedList:

Try

Dim environmentList As New SortedList

For Each de As DictionaryEntry In _

Environment.GetEnvironmentVariables()

environmentList(de.Key) = de.Value

Next

CHAPTER 14 ■ SQLCLR PROGRAMMING 357

794Xch14final.qxd  3/29/07  4:22 PM  Page 357



The procedure uses the SqlContext.Pipe to return results to SQL Server as a result set.

The first step to using the SqlContext.Pipe is to set up a SqlRecord with the structure that

you wish the result set to take:

Dim record As New SqlDataRecord( _

New SqlMetaData("VarName", SqlDbType.NVarChar, 1024), _

New SqlMetaData("VarValue", SqlDbType.NVarChar, 4000))

Next, you call the SendResultsStart method with the SqlDataRecord to initialize the

result set:

SqlContext.Pipe.SendResultsStart(record)

Then it’s a simple matter of looping through the SortedList of environment variable

key/value pairs and sending them to the server via the SendResultsRow method:

For Each de As DictionaryEntry In environmentList

record.SetValue(0, de.Key)

record.SetValue(1, de.Value)

SqlContext.Pipe.SendResultsRow(record)

Next

The SetValue method is called for each column of the SqlRecord to properly set the

results, and then SendResultsRow is called on the SqlContext.Pipe for each row. After all

results have been sent to the client, the SendResultsEnd method of the SqlContext.Pipe is

called to complete the result set and return the SqlContext.Pipe to its initial state:

SqlContext.Pipe.SendResultsEnd()

Finally, the code finishes with the Catch portion of the Try...Catch block:

Catch ex As Exception

SqlContext.Pipe.Send(ex.Message)

End Try

End Sub

End Class

End Namespace

The result of executing the GetEnvironmentVars SQLCLR stored procedure is shown in

Figure 14-5.

CHAPTER 14 ■ SQLCLR PROGRAMMING358

794Xch14final.qxd  3/29/07  4:22 PM  Page 358



SQLCLR User-Defined Aggregates
User-defined aggregates (UDAs) are an exciting new addition to SQL Server 2005. 

A UDA is similar to a user-defined function, but it can act on entire sets of data at once,

as opposed to one item at a time. UDAs operate like the built-in SQL Server aggregate

functions (SUM, AVG, etc.). SQLCLR UDAs, however, have access to .NET functionality

and can operate on numeric, character, temporal (datetime), or even user-defined data

types. A basic UDA has four mandatory methods:

• The UDA calls its Init method when the SQL engine prepares to aggregate. The

code in this method can reset temporary variables to their start state, initialize

buffers, and perform other initialization functions.

• The Accumulate method is called as each row is processed, allowing you to aggre-

gate the data passed in. The Accumulate method might increment a counter, add a

row’s value to a running total, or possibly perform other more complex processing

on a row’s data.

• The Merge method is invoked when SQL Server decides to use parallel processing to

complete an aggregate. If the query engine decides to use parallel processing it will

create multiple instances of your UDA and call the Merge method to join the results

into a single aggregation.

• The Terminate method is the final method of the UDA. It is called after all rows have

been processed and any aggregates created in parallel have been merged. The

Terminate method returns the final result of the aggregation to the query engine.

CHAPTER 14 ■ SQLCLR PROGRAMMING 359

Figure 14-5. SQLCLR stored procedure sample results

794Xch14final.qxd  3/29/07  4:22 PM  Page 359



CHAPTER 14 ■ SQLCLR PROGRAMMING360

THE 8,000-BYTE LIMITATION

Each instance of a SQLCLR UDA has a serialization limit of 8,000 bytes in the current version of SQL
Server. Because of this, certain tasks are harder to perform using a SQLCLR UDA. Creating an array,
hash table, or other structure to hold intermediate results during an aggregation (such as aggregates
that calculate statistical mode or median) can cause your UDA to very quickly run up against the 8,000-
byte limit and throw an exception for large datasets. Consider the following sample T-SQL query that
calculates the statistical median of the TotalDue column of the Sales.SalesOrderHeader table:

USE AdventureWorks;

GO

WITH CalcTotalDueMedian (Num, TotalDue)

AS

(

SELECT ROW_NUMBER() OVER (ORDER BY TotalDue) AS Num, TotalDue

FROM Sales.SalesOrderHeader

)

SELECT AVG(TotalDue) AS Median

FROM CalcTotalDueMedian

WHERE Num IN (

SELECT MAX(Num + 1)/2

FROM CalcTotalDueMedian

UNION

SELECT MAX(Num + 2)/2

FROM CalcTotalDueMedian

);

GO

The statistical median is the middle value for a set of sorted numbers if there is an odd number of
numbers in the set, or the average of the middle two values if there is an even number of numbers in
the set. This sample code retrieves all the TotalDue values, sorts them, and numbers them with the
ROW_NUMBER function. It then calculates the median as the average of the middle one or two terms.
Calculating the median with a SQLCLR UDA would require intermediate storage of a potentially large
amount of data. The calculation in the sample could generate a potentially large intermediate result set.
The Sales.SalesOrderHeader table, for example, has 31,465 rows in it. These types of calculations
are better left to the devices of T-SQL’s set-based processing.

794Xch14final.qxd  3/29/07  4:22 PM  Page 360



The sample UDA in Listing 14-4 determines the range for a group of numbers. The

range is the difference between the minimum and maximum values in a set of numbers.

The UDA determines the minimum and maximum values of the set of numbers passed in

and returns the difference.

Listing 14-4. Sample Range UDA

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Namespace APress.Samples

<Serializable()> _

<SqlUserDefinedAggregate(Format.Native)> _

Public Structure Range

Private min As SqlDouble

Private max As SqlDouble

Public Sub Init()

Me.min = SqlDouble.Null

Me.max = SqlDouble.Null

End Sub

Public Sub Accumulate(ByVal value As SqlDouble)

If Not value.IsNull Then

If Me.min.IsNull OrElse value < Me.min Then

Me.min = value

End If

If Me.max.IsNull OrElse value > Me.max Then

Me.max = value

End If

End If

End Sub

CHAPTER 14 ■ SQLCLR PROGRAMMING 361

794Xch14final.qxd  3/29/07  4:22 PM  Page 361



Public Sub Merge(ByVal tempRange As Range)

If (Me.min.IsNull OrElse tempRange.min < Me.min) Then

Me.min = tempRange.min

End If

If (Me.min.IsNull OrElse tempRange.max > Me.max) Then

Me.max = tempRange.max

End If

End Sub

Public Function Terminate() As SqlDouble

Dim result As SqlDouble = SqlDouble.Null

If Not (Me.min.IsNull OrElse Me.max.IsNull) Then

result = Me.max - Me.min

End If

Return result

End Function

End Structure

End Namespace

The UDA begins, like other SQLCLR assemblies, by importing the proper

namespaces:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Next up is the APress.Samples namespace declaration and the Structure (struct for

C#), which represents the UDA. The attributes Serializable and SqlUserDefinedAggregate

are applied to the Structure. The Format.Native serialization format is specified as well.

Because this is a simple UDA, Format.Native will provide the best performance and will

be the easiest to implement. More complex UDAs that use reference types require

Format.UserDefined serialization, and must implement the IBinarySerialize interface:

Namespace APress.Samples

<Serializable()> _

<SqlUserDefinedAggregate(Format.Native)> _

Public Structure Range

CHAPTER 14 ■ SQLCLR PROGRAMMING362

794Xch14final.qxd  3/29/07  4:22 PM  Page 362



Inside the aggregate body, two private variables are declared, min and max, which

represent the minimum and maximum values:

Private min As SqlDouble

Private max As SqlDouble

The mandatory Init method initializes the min and max private variables to

SqlDouble.Null:

Public Sub Init()

Me.min = SqlDouble.Null

Me.max = SqlDouble.Null

End Sub

The Accumulate method accepts a SqlDouble value. It first checks that the value is

not NULL (NULLs are ignored). Then it checks to see if the value passed in is less than the

min variable (or if min is NULL), and if so assigns the value to min. It also checks the value

against max and assigns it to max if it is greater (or if max is NULL). In this way the min and

max values are determined “on the fly” as the query engine feeds values into the

Accumulate method:

Public Sub Accumulate(ByVal value As SqlDouble)

If Not value.IsNull Then

If Me.min.IsNull OrElse value < Me.min Then

Me.min = value

End If

If Me.max.IsNull OrElse value > Me.max Then

Me.max = value

End If

End If

End Sub

The Merge method merges a Range structure that is created in parallel with the cur-

rent structure. The method accepts a Range structure and compares its min and max

variables to those of the current Range structure. It then adjusts the current structure’s

min and max variables based on the Range structure passed into the method, effectively

merging the two results:

Public Sub Merge(ByVal tempRange As Range)

If (Me.min.IsNull OrElse tempRange.min < Me.min) Then

Me.min = tempRange.min

CHAPTER 14 ■ SQLCLR PROGRAMMING 363

794Xch14final.qxd  3/29/07  4:22 PM  Page 363



End If

If (Me.min.IsNull OrElse tempRange.max > Me.max) Then

Me.max = tempRange.max

End If

End Sub

The final method of the UDA is the Terminate function, which returns a SqlDouble

result. This function checks for NULL min or max results (the UDA will return NULL if either

min or max is a NULL). If both min and max are not NULL, the result is the difference between

the max and min values:

Public Function Terminate() As SqlDouble

Dim result As SqlDouble = SqlDouble.Null

If Not (Me.min.IsNull OrElse Me.max.IsNull) Then

result = Me.max - Me.min

End If

Return result

End Function

End Structure

End Namespace

A simple test of the UDA is the following query that determines the range of prices paid

by customers for AdventureWorks products. Information like this can help AdventureWorks’

sales and management teams set optimal price points for their products:

SELECT ProductID, dbo.Range(UnitPrice) AS Price_Range

FROM Sales.SalesOrderDetail

WHERE UnitPrice > 0

GROUP BY ProductID;

The results of this query look like those in Figure 14-6.

CHAPTER 14 ■ SQLCLR PROGRAMMING364

Figure 14-6. Results of the Range aggregate when applied to unit prices

794Xch14final.qxd  3/29/07  4:22 PM  Page 364



When dealing with more complex user-defined aggregates, the SQLCLR imposes

some restrictions:

• As mentioned previously, UDAs have a serialization limit of 8,000 bytes total at

any given point in a calculation. This can be very limiting if your UDA requires

intermediate result storage, or if you intend to use your UDA with strings, com-

plex user-defined types, or .NET reference types such as ArrayLists.

• Any UDA that uses reference (nonvalue) types, such as ArrayLists, SortedLists,

and Objects cannot be marked for Format.Native serialization. Such UDAs have to

be marked as Format.UserDefined serialization, which means that the UDA must

implement the IBinarySerialize interface, including the Read and Write methods.

Basically you have to tell SQL Server how to serialize your data when using refer-

ence types. There is also a performance impact associated with Format.UserDefined

serialization as opposed to Format.Native.

• For a UDA, the Terminate method must return the same type of data that the

Accumulate method accepts. If these data types do not match, an error will occur.

Also, as mentioned previously, it is best practice to use the SQL Server–specific

data types, since the standard .NET types tend to choke on NULL values.

■Tip The .NET Framework uses Unicode to encode strings and provides no mapping to non-Unicode 
(i.e., VARCHAR) strings. So, to make a long story short, use NCHAR and NVARCHAR when communicating with
SQLCLR assemblies.

SQLCLR User-Defined Types
SQL Server 2000 had built-in support for user-defined data types, but they were limited

in scope and functionality. The old-style user-defined data types had the following

restrictions:

• They had to be derived from built-in data types.

• Their format and/or range could be restricted by using T-SQL rules.

• They could be assigned a default value.

• They could be declared as NULL or NOT NULL.

SQL Server 2005 provides support for old-style user-defined data types and rules,

presumably for backward-compatibility with existing applications. The AdventureWorks

CHAPTER 14 ■ SQLCLR PROGRAMMING 365

794Xch14final.qxd  3/29/07  4:22 PM  Page 365



database contains examples of old-style user-defined data types, such as the dbo.Phone

data type, which is based on the built-in VARCHAR data type.

■Caution Rules have been deprecated in SQL Server 2005 and will be removed from a future version.
Since rules are the primary method of constraining the values of old-style user-defined data types, it follows
that these older user-defined data types might be removed from a future version as well.

SQL Server 2005 supports a far more flexible solution to your custom data type

needs in the form of SQLCLR user-defined types (UDTs). SQLCLR user-defined types

are backed by the power of the .NET Framework. Common examples of SQLCLR UDTs

include mathematical concepts such as points, vectors, complex numbers, and other

types not built in to the SQL Server type system.

Complex numbers are a superset of real numbers. They are represented with a “real”

part and an “imaginary” part in the format a+bi, where a is a real number representing

the real part of the value, b is a real number representing the imaginary part, and the lit-

eral letter i after the imaginary part stands for the imaginary number i, which is the

square root of -1. Complex numbers are often used in the math, science, and engineering

fields to solve difficult and sometimes abstract problems. Some examples of complex

numbers include: 101.9+3.7i, 98+12i, -19i, and 12+0i (which can also be represented as

12). The example in Listing 14-5 implements complex numbers as a SQLCLR UDT.

Listing 14-5. Complex Numbers UDT

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text.RegularExpressions

Namespace APress.Examples

<Serializable()> _

<SqlUserDefinedType(Format.Native, IsByteOrdered:=True)> _

Public Structure Complex

Implements INullable

Public real As Double

Public imaginary As Double

Private m_Null As Boolean

CHAPTER 14 ■ SQLCLR PROGRAMMING366

794Xch14final.qxd  3/29/07  4:22 PM  Page 366



Private Shared ReadOnly rx As New System.Text.RegularExpressions.Regex( _

"^(?<Imaginary>[+-]?([0-9]+|[0-9]*\.[0-9]+))[i|I]$|" & _

"^(?<Real>[+-]?([0-9]+|[0-9]*\.[0-9]+))$|" & _

"^(?<Real>[+-]?([0-9]+|[0-9]*\.[0-9]+))(?<Imaginary>[+-]?" & _

"([0-9]+|[0-9]*\.[0-9]+))[i|I]$")

Public Shared Function Parse(ByVal s As SqlString) As Complex

Dim u As Complex = New Complex

If s.IsNull Then

u = Null

Else

Dim m As System.Text.RegularExpressions.MatchCollection = _

rx.Matches(s.Value)

If (m.Count = 0) Then

Throw (New FormatException("Invalid Complex Number Format."))

End If

Dim real_str As String = m.Item(0).Groups("Real").Value

Dim imaginary_str As String = m.Item(0).Groups("Imaginary").Value

If (real_str = "" AndAlso imaginary_str = "") Then

Throw (New FormatException("Invalid Complex Number Format."))

End If

If (real_str = "") Then

u.real = 0.0

Else

u.real = Convert.ToDouble(real_str)

End If

If (imaginary_str = "") Then

u.imaginary = 0.0

Else

u.imaginary = Convert.ToDouble(imaginary_str)

End If

End If

Return u

End Function

Public Overrides Function ToString() As String

Dim sign As String = ""

If Me.imaginary >= 0.0 Then

sign = "+"

End If

Return Me.real.ToString + sign + Me.imaginary.ToString + "i"

End Function

CHAPTER 14 ■ SQLCLR PROGRAMMING 367

794Xch14final.qxd  3/29/07  4:22 PM  Page 367



Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull

Get

Return m_Null

End Get

End Property

Public Shared ReadOnly Property Null() As Complex

Get

Dim h As Complex = New Complex

h.m_Null = True

Return h

End Get

End Property

Public Sub New(ByVal r As Double, ByVal i As Double)

Me.real = r

Me.imaginary = i

End Sub

Public Shared Operator +(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Dim u As Complex

If (n1.IsNull() OrElse n2.IsNull()) Then

u = Null

Else

u = New Complex(n1.real + n2.real, n1.imaginary + n2.imaginary)

End If

Return u

End Operator

Public Shared Operator /(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Dim u As Complex

If (n1.IsNull() OrElse n2.IsNull()) Then

u = Null

Else

If (n2.real = 0.0 AndAlso n2.imaginary = 0.0) Then

Throw New DivideByZeroException("Complex Number Division By ➥

Zero Exception.")

End If

CHAPTER 14 ■ SQLCLR PROGRAMMING368

794Xch14final.qxd  3/29/07  4:22 PM  Page 368



u = New Complex(((n1.real * n2.real) + _

(n1.imaginary * n2.imaginary)) / _

((n2.real ^ 2 + n2.imaginary ^ 2)), _

((n1.imaginary * n2.real) - (n1.real * n2.imaginary)) / _

((n2.real ^ 2 + n2.imaginary ^ 2)))

End If

Return u

End Operator

Public Shared Function CAdd(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Return n1 + n2

End Function

Public Shared Function Div(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Return n1 / n2

End Function

End Structure

End Namespace

The code begins with the required namespace imports and the namespace declara-

tion for the sample:

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text.RegularExpressions

Namespace APress.Examples

Next is the declaration of the structure that represents an instance of the UDT. The

Serializable, Format.Native, and IsByteOrdered:=True attributes/attribute properties are

all set on the UDT. In addition, all SQLCLR UDTs must implement the INullable inter-

face. INullable requires that the IsNull and Null properties be defined. Table 14-1 shows

a few of the common attributes that are used in SQLCLR UDT definitions.

CHAPTER 14 ■ SQLCLR PROGRAMMING 369

794Xch14final.qxd  3/29/07  4:22 PM  Page 369



Table 14-1. Common SQLCLR UDT Attributes

AttributeProperty Value Description

Serializable n/a n/a Indicates that the UDT can be seri-
alized and deserialized.

SqlUserDefinedType Format.Native n/a Specifies that the UDT uses native
format for serialization. The native
format is the most efficient format
for serialization/deserialization, but
it imposes some limitations. You
can only expose .NET value data
types as the fields like Char, Integer,
etc. You cannot expose reference
data types like Strings, Arrays, etc.

Format.UserDefined n/a Specifies that the UDT uses a 
user-defined format for serializa-
tion. When this is specified, your
UDT must implement the
IBinarySerialize interface and you
are responsible for supplying the
Write() and Read() methods that
serialize and deserialize your UDT.

IsByteOrdered True/False Allows comparisons and sorting of
UDT values based on their binary
representation. This is also required
if you intend to create indexes on
columns defined as a SQLCLR UDT
type.

IsFixedLength True/False Set to True if the serialized instance
of your UDT is a fixed length.

MaxByteSize <= 8000 Indicates the maximum size of your
serialized UDT instances in bytes.
The upper limit for this property is
8,000 bytes.

The code in Listing 14-5 applies the Serializable attribute to the UDT. It also sets the

UDT format to Format.IsNative and the UDT IsByteOrdered property to True:

<Serializable()> _

<SqlUserDefinedType(Format.Native, IsByteOrdered:=True)> _

Public Structure Complex

Implements INullable

The public and private fields are then declared:

CHAPTER 14 ■ SQLCLR PROGRAMMING370

794Xch14final.qxd  3/29/07  4:22 PM  Page 370



Public real As Double

Public imaginary As Double

Private m_Null As Boolean

The real and imaginary public fields represent the real and imaginary parts of the

complex number, respectively. The m_Null field is a Boolean value that is set to True if the

current instance of the complex type is NULL, and False otherwise.

The first method declared in the UDT is the Parse method (required by all UDTs),

which takes a string value from SQL Server and parses it into a complex number. The

Parse method uses a .NET regular expression to simplify parsing a bit:

Private Shared ReadOnly rx As New System.Text.RegularExpressions.Regex( _

"^(?<Imaginary>[+-]?([0-9]+|[0-9]*\.[0-9]+))[i|I]$|" & _

"^(?<Real>[+-]?([0-9]+|[0-9]*\.[0-9]+))$|" & _

"^(?<Real>[+-]?([0-9]+|[0-9]*\.[0-9]+))(?<Imaginary>[+-]?" & _

"([0-9]+|[0-9]*\.[0-9]+))[i|I]$")

Public Shared Function Parse(ByVal s As SqlString) As Complex

Dim u As Complex = New Complex

If s.IsNull Then

u = Null

Else

Dim m As System.Text.RegularExpressions.MatchCollection = _

rx.Matches(s.Value)

If (m.Count = 0) Then

Throw (New FormatException("Invalid Complex Number Format."))

End If

Dim real_str As String = m.Item(0).Groups("Real").Value

Dim imaginary_str As String = m.Item(0).Groups("Imaginary").Value

If (real_str = "" AndAlso imaginary_str = "") Then

Throw (New FormatException("Invalid Complex Number Format."))

End If

If (real_str = "") Then

u.real = 0.0

Else

u.real = Convert.ToDouble(real_str)

End If

If (imaginary_str = "") Then

u.imaginary = 0.0

Else

u.imaginary = Convert.ToDouble(imaginary_str)

CHAPTER 14 ■ SQLCLR PROGRAMMING 371

794Xch14final.qxd  3/29/07  4:22 PM  Page 371



End If

End If

Return u

End Function

The regular expression (regex) uses named groups to parse the input string into Real

and/or Imaginary named groups. If the regex is successful, at least one (if not both) of

these named groups will be populated. If unsuccessful, both named groups are empty

and a Format Exception is thrown. If at least one of the named groups is properly set, the

string representations are converted to Double type and assigned to the appropriate UDT

fields. Table 14-2 shows sample input strings and the values assigned to the UDT fields

when they are parsed.

Table 14-2. Complex Number Parsing Samples

Complex Number Real Imaginary m_Null

100+11i 100.0 11.0 False

99.9 99.9 0.0 False

3.7-9.8i 3.7 -9.8 False

2.1i 0.0 2.1 False

-9-8.2i -9.0 -8.2 False

NULL n/a n/a True

The ToString method is required for all UDTs as well. This method converts the inter-

nal UDT data to its string representation. In the case of complex numbers, ToString

needs to perform the following steps:

1. Convert the real part to a string.

2. Append a plus sign (+) if the imaginary part is zero or positive.

3. Append the imaginary part.

4. Append the letter i to indicate it does in fact represent a complex number.

Notice that if the imaginary part is negative, no sign is appended between the real

and imaginary parts, since the sign is already included in the imaginary part:

CHAPTER 14 ■ SQLCLR PROGRAMMING372

794Xch14final.qxd  3/29/07  4:22 PM  Page 372



Public Overrides Function ToString() As String

Dim sign As String = ""

If Me.imaginary >= 0.0 Then

sign = "+"

End If

Return Me.real.ToString + sign + Me.imaginary.ToString + "i"

End Function

The IsNull and Null properties are both required by all UDTs. IsNull is a Boolean

property that indicates whether a UDT instance is NULL or not. The Null property returns

a NULL instance of the UDT type:

Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull

Get

Return m_Null

End Get

End Property

Public Shared ReadOnly Property Null() As Complex

Get

Dim h As Complex = New Complex

h.m_Null = True

Return h

End Get

End Property

This particular UDT includes a constructor function that accepts two Double type val-

ues and creates a UDT instance from them:

Public Sub New(ByVal r As Double, ByVal i As Double)

Me.real = r

Me.imaginary = i

End Sub

■Tip For a UDT designed using a Structure, a constructor method is not required. In fact a default con-
structor (that takes no parameters) is not even allowed. To keep later code simple, a constructor method is
used in this example.

CHAPTER 14 ■ SQLCLR PROGRAMMING 373

794Xch14final.qxd  3/29/07  4:22 PM  Page 373



To keep this listing short, but highlight the important points, this sample UDT sup-

ports only addition and division operations on complex numbers. The UDT overrides the

+ and / math operators (addition and division). Redefining these operators makes it eas-

ier to write and debug additional UDT methods. These overridden .NET math operators

are not available to T-SQL code, so that the standard T-SQL math operators will not work

on the UDT. Adding and dividing UDT values from T-SQL must be done via explicitly

exposed methods of the UDT. These methods in the Complex UDT are CAdd and Div, for

complex number addition and division, respectively. Note that CAdd (complex number

add) was chosen as a method name to avoid conflicts with the T-SQL reserved word ADD.

I won’t go too deeply into the inner workings of complex numbers, but these two

operators were chosen as samples for this listing because complex number addition is a

straightforward operation, while division is a bit more complicated. These two sample

methods are declared as Shared (static in C#), so they can be invoked on the UDT data

type itself from SQL Server, instead of on an instance of the UDT. The full complex num-

ber Complex UDT listing is available in Appendix D.

The declarations for the addition and division Complex UDT operators are shown

here:

Public Shared Operator +(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Dim u As Complex

If (n1.IsNull() OrElse n2.IsNull()) Then

u = Null

Else

u = New Complex(n1.real + n2.real, n1.imaginary + n2.imaginary)

End If

Return u

End Operator

CHAPTER 14 ■ SQLCLR PROGRAMMING374

TO SHARE OR NOT TO SHARE

Shared (static in C#) methods of a UDT are invoked from SQL Server using a format like this:

Complex::CAdd(@n1, @n2)

Nonshared, or instance, methods of a UDT are invoked from SQL Server using a format like this:

@n1.CAdd(@n2)

The style of methods you use (shared or instance) is a determination you’ll need to make on a
case-by-case basis.

794Xch14final.qxd  3/29/07  4:22 PM  Page 374



Public Shared Operator /(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Dim u As Complex

If (n1.IsNull() OrElse n2.IsNull()) Then

u = Null

Else

If (n2.real = 0.0 AndAlso n2.imaginary = 0.0) Then

Throw New DivideByZeroException("Complex Number Division By ➥

Zero Exception.")

End If

u = New Complex(((n1.real * n2.real) + _

(n1.imaginary * n2.imaginary)) / _

((n2.real ^ 2 + n2.imaginary ^ 2)), _

((n1.imaginary * n2.real) - (n1.real * n2.imaginary)) / _

((n2.real ^ 2 + n2.imaginary ^ 2)))

End If

Return u

End Operator

Public Shared Function CAdd(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Return n1 + n2

End Function

Public Shared Function Div(ByVal n1 As Complex, ByVal n2 As Complex) As _

Complex

Return n1 / n2

End Function

End Structure

End Namespace

■Caution One thing that you need to be aware of any time you invoke a UDT (or any SQLCLR object) from
T-SQL is the SQL NULL value. For purposes of the Complex UDT, you take a cue from ANSI SQL and return a
NULL result any time a NULL is passed in as a parameter to any UDT method. So a Complex value plus NULL
returns NULL, as does a Complex value divided by NULL, and so on. You will notice a lot of code in the full
listing that is specifically designed to deal with T-SQL NULLs.

Listing 14-6 demonstrates how the Complex UDT can be used.

CHAPTER 14 ■ SQLCLR PROGRAMMING 375

794Xch14final.qxd  3/29/07  4:22 PM  Page 375



Listing 14-6. Complex Number UDT Demonstration

DECLARE @c COMPLEX

SELECT @c = '+100-10i'

DECLARE @d COMPLEX

SELECT @d = '5i'

SELECT 'ADD: ' + @c.ToString() + ' , ' + @d.ToString(), 

COMPLEX::CAdd(@c, @d).ToString()

SELECT 'DIV: ' + @c.ToString() + ' , ' + @d.ToString(), 

COMPLEX::Div(@c, @d).ToString()

The following is the result of this simple test script:

ADD:   100-10i , 0+5i    100-5i

DIV:   100-10i , 0+5i    -2-20i

In addition to the basic operations, the Complex class can be easily extended to sup-

port several more advanced complex number operators and functions. The full listing

includes all the basic math operators as well as logarithmic and exponential functions

(such as Log(), Power(), etc.) and trigonometric and hyperbolic functions (such as Sin(),

Cos(), Tanh(), etc.) for complex numbers.

Summary
This chapter discussed SQL Server 2005 assemblies and the different types of SQLCLR

objects that can be created. These specific topics were covered:

• SQLCLR usage considerations

• SQLCLR assemblies and security, including SAFE, EXTERNAL_ACCESS, and UNSAFE per-

mission sets

• SQLCLR objects including the following:

• User-defined functions (scalar and table-valued)

• Stored procedures

• User-defined aggregates (UDAs)

• User-defined types (UDTs)

CHAPTER 14 ■ SQLCLR PROGRAMMING376

794Xch14final.qxd  3/29/07  4:22 PM  Page 376



I provided code samples and some general guidelines for when to use the SQLCLR

and when to rely on T-SQL’s built-in functionality. The SQLCLR gives you the opportunity

to extend SQL Server’s capabilities with the full power of the .NET Framework. It is espe-

cially useful for accessing external resources that are off-limits to normal T-SQL code;

and if properly used it can provide performance gains for code requiring complex calcu-

lations and string manipulations.

This chapter served as an introduction to SQLCLR programming. For in-depth

SQLCLR programming information, I highly recommend the book Pro SQL Server 2005

Assemblies by Robin Dewson and Julian Skinner (Apress, 2005).

The next chapter will introduce client-side .NET connectivity to SQL Server 2005.

CHAPTER 14 ■ SQLCLR PROGRAMMING 377

794Xch14final.qxd  3/29/07  4:22 PM  Page 377



794Xch14final.qxd  3/29/07  4:22 PM  Page 378



.NET Client Programming

What’s more important? An efficient database, or a well-designed client application to

connect to the database? In my estimation they are both equally important. While this

book is focused on server-side functionality, the .NET Framework does offer several

options to make SQL Server 2005 client connectivity simple and efficient. This chapter

discusses using ADO.NET and the .NET SqlClient as a basis for building your own easy-

to-use, cutting-edge client applications.

ADO.NET
The System.Data namespaces consist of classes and enumerations that constitute the

ADO.NET architecture, the .NET Framework’s primary data access method. The .NET

architecture provides disconnected data access via the DataSet, DataTable, and

DataAdapter classes. The following are some of the more commonly used namespaces for

SQL Server data access:

• The System.Data.Common namespace provides access to classes that are shared by

.NET Framework data access providers.

• System.Data.Sql contains classes with SQL Server–specific functionality.

• System.Data.SqlTypes provides .NET classes representing native, nullable data

types in SQL Server. These SQL Server data types (for the most part) use the same

internal representation as SQL Server data types, helping to reduce precision loss

problems. Using these types can also help speed up SQL Server connectivity, since

it helps eliminate implicit conversions. Table 15-1 lists the .NET SqlTypes and their

corresponding native T-SQL data types.

379

C H A P T E R  1 5

794Xch15final.qxd  3/29/07  4:20 PM  Page 379



Table 15-1. System.Data.SqlTypes Reference

System.Data.SqlTypes Class Native T-SQL Data Type

SqlBinary binary, image, timestamp, varbinary

SqlBoolean bit

SqlByte tinyint

SqlBytes image, varbinary(max)

SqlChars ntext, nvarchar(max), text, varchar(max)

SqlDateTime datetime, smalldatetime

SqlDouble float(53)

SqlGuid uniqueidentifier

SqlInt16 smallint

SqlInt32 int

SqlInt64 bigint

SqlMoney money, smallmoney

SqlSingle real, float(24)

SqlString char, nchar, text, ntext, nvarchar, varchar

SqlXml xml

■Note SqlBytes represents a mutable reference around a Buffer or Stream. SqlChars is a mutable
reference around a Char array, SqlStreamChars, or SqlString instance. These types are recommended
for large-object (LOB) data types.

• The primary namespace for SQL Server connectivity is System.Data.SqlClient.

This namespace includes classes that provide optimized access to SQL Server

version 7.0 and higher. The classes in this namespace are designed specifically

to take advantage of SQL Server–specific features and won’t work with other data

sources.

• Microsoft also provides the System.Data.OleDb namespace, which can connect

to a variety of data sources, including SQL Server. OLE DB is not as efficient

when used against SQL Server, but it is a good option for applications that need

to access data on multiple platforms, such as both SQL Server and Microsoft

Access.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING380

794Xch15final.qxd  3/29/07  4:20 PM  Page 380



• The System.Data.Odbc provides managed access to old-fashioned ODBC drivers.

ODBC was developed in the early 1990s as a “one-size-fits-all” standard for con-

necting to a wide array of varied data sources. Because of its mission of standardiz-

ing data access across a wide variety of data sources, ODBC provides a generally

“plain vanilla” interface that often does not take advantage of most SQL Server or

other DBMS platform–specific features. This means ODBC is not as efficient as the

SqlClient or OleDb clients but still provides a useful option for connecting to legacy

database systems. It is also a proven interface for connecting to a wide variety of

data sources such as Excel spreadsheets or other database management systems.

The .NET SqlClient
The .NET SqlClient is the most efficient way to connect to SQL Server from a client

application. With the possible exceptions of upgrading legacy code, or designing code

that must access non-SQL Server data sources, SqlClient is the client connectivity

method of choice.

The main classes for establishing a connection, sending SQL commands, and

retrieving results with the SqlClient are listed in Table 15-2.

Table 15-2. Main SqlClient Classes

System.Data.SqlClient Class Description

SqlCommand An object that represents a SQL Server statement or stored proce-
dure to execute.

SqlCommandBuilder An object that automatically generates single-table commands to
reconcile changes made to an ADO.NET DataSet.

SqlConnection An object that establishes an open connection to a SQL Server
database.

SqlConnectionStringBuilder An object that creates connection strings used by SqlConnection
objects.

SqlDataAdapter An object that wraps a set of SqlCommands, and a SqlConnection
object that can be used to fill a DataSet and update a SQL Server
database.

SqlDataReader An object that provides methods to read a forward-only stream of
rows from a SQL Server database.

SqlException A SQL Server–specific exception class. This class can be used to
capture a SQL Server error or warning.

SqlParameter A parameter to a SqlCommand.

SqlParameterCollection A collection of SqlParameter objects associated with a SqlCommand.

SqlTransaction A T-SQL transaction to be made in a SQL Server database.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 381

794Xch15final.qxd  3/29/07  4:20 PM  Page 381



Listing 15-1 demonstrates SqlClient data access with a SqlDataReader. This is the

type of access you might use in an ASP.NET page to quickly retrieve values for a drop-

down list, for example. This sample is written to run as a VB 2005 console application.

The SQL Server connection string defined in the sqlConStr variable should be modified

to suit your local SQL Server environment and security.

Listing 15-1. SqlDataReader Sample

Imports System.Data.SqlClient

Namespace APress.Samples

Module DataReaderExample

Sub Main()

Dim sqlConStr As String = "DATA SOURCE=(local);" & _

"INITIAL CATALOG=AdventureWorks;" & _

"INTEGRATED SECURITY=SSPI;"

Dim sqlStmt As String = "SELECT DepartmentId, " & _

" Name, " & _

" GroupName, " & _

" ModifiedDate " & _

" FROM HumanResources.Department " & _

" ORDER BY DepartmentId"

Dim sqlCon As SqlConnection = Nothing

Dim sqlCmd As SqlCommand = Nothing

Dim sqlDr As SqlClient.SqlDataReader = Nothing

Try

sqlCon = New SqlConnection(sqlConStr)

sqlCon.Open()

sqlCmd = New SqlCommand(sqlStmt, sqlCon)

sqlDr = sqlCmd.ExecuteReader()

Do While sqlDr.Read()

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}" & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}", sqlDr.Item("DepartmentId").ToString(), _

sqlDr.Item("Name").ToString(), _

sqlDr.Item("GroupName").ToString(), _

sqlDr.Item("ModifiedDate").ToString())

Loop

Catch ex As SqlException

Console.WriteLine(ex.Message)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING382

794Xch15final.qxd  3/29/07  4:20 PM  Page 382



Finally

If Not (sqlDr Is Nothing) Then

sqlDr.Close()

End If

If Not (sqlCmd Is Nothing) Then

sqlCmd.Dispose()

End If

If Not (sqlCon Is Nothing) Then

sqlCon.Dispose()

End If

End Try

Console.Write("Press a Key to Continue...")

Console.ReadKey()

End Sub

End Module

End Namespace

The example is a very simple VB console application that retrieves the list of depart-

ments from the HumanResources.Department table of the AdventureWorks database and

writes the data to the display. The example begins by importing the SqlClient namespace

and declaring this module a part of the APress.Samples namespace, declaring a VB mod-

ule and declaring the Main() subroutine. Though not required, importing the namespace

saves some keystrokes and helps make code more readable by eliminating the need to

prefix the System.Data.SqlClient classes and enumerations with the namespace:

Imports System.Data.SqlClient

Namespace APress.Samples

Module DataReaderExample

Sub Main()

The subroutine begins by defining the SQL Server connection string and the T-SQL

SELECT query that will retrieve the department data. The SqlConnection, SqlCommand, and

SqlDataReader objects are also declared:

Dim sqlConStr As String = "DATA SOURCE=(local);" & _

"INITIAL CATALOG=AdventureWorks;" & _

"INTEGRATED SECURITY=SSPI;"

Dim sqlStmt As String = "SELECT DepartmentId, " & _

" Name, " & _

" GroupName, " & _

" ModifiedDate " & _

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 383

794Xch15final.qxd  3/29/07  4:20 PM  Page 383



" FROM HumanResources.Department " & _

" ORDER BY DepartmentId"

Dim sqlCon As SqlConnection = Nothing

Dim sqlCmd As SqlCommand = Nothing

Dim sqlDr As SqlClient.SqlDataReader = Nothing

The SqlConnection connection string is composed of a series of key/value pairs sepa-

rated by semicolons like this:

DATA SOURCE=(local);INITIAL CATALOG=AdventureWorks;

The most commonly used SqlConnection connection string keys are listed in 

Table 15-3.

Table 15-3. SqlConnection Connection String Keys

Connection String Keys Description

AttachDBFileName The name of the full path to an attachable primary database file
(MDF file).

Connection Timeout The length of time (in seconds) to wait for a server connection
before stopping the attempt.

Data Source The name or IP address of a SQL Server instance to connect to. 
Use server\instance format for named instances. A port number
can be added to the end of the name or network address with 
“, port_num”.

Encrypt Encryption, SSL, with SQL Server.

Initial Catalog The name of the database to connect to once a server connection
is established.

Integrated Security Key set to true, yes, or sspi, Windows Integrated Security for con-
nection. When false or no, SQL Server security is used.

MultipleActiveResultSets Key, when true, connection multiple active result sets (MARS).
When false, all result sets from a batch must be processed before
any other batch can be executed on the connection.

Password The password for the SQL Server account used to log in. Using
Integrated Security is recommended over SQL Server account
security.

Persist Security Info Key, when set to false or no, sensitive security information (like
password) not returned as part of the connection if the connection
has been opened. The recommended setting is false.

User ID The SQL Server account user ID used to log in. Integrated Security
is recommended over SQL Server account security.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING384

794Xch15final.qxd  3/29/07  4:20 PM  Page 384



The next section of code is enclosed in a Try...Catch block. The SqlConnection

is instantiated and opened using the connection string defined previously. Then a

SqlCommand is created on the open connection:

Try

sqlCon = New SqlConnection(sqlConStr)

sqlCon.Open()

sqlCmd = New SqlCommand(sqlStmt, sqlCon)

■Tip When connecting to SQL Server from a .NET client application, it’s a very good idea to code defen-
sively with Try...Catch blocks. Defensive programming in database client applications can save a lot of
headaches down the road. Defensive programming simply means trying to anticipate the problems that
might occur and make sure your code handles them. Some of the possible errors you might encounter
include the following: could not connect to SQL Server; an expected table or other database object does
not exist; NULLs are returned when other values are expected.

Next, the ExecuteReader method is called on the SqlCommand and the result is assigned

to the SqlDataReader. A Do While loop is used to retrieve rows from the SqlDataReader and

display them on the console:

sqlDr = sqlCmd.ExecuteReader()

Do While sqlDr.Read()

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}" & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}", sqlDr.Item("DepartmentId").ToString(), _

sqlDr.Item("Name").ToString(), _

sqlDr.Item("GroupName").ToString(), _

sqlDr.Item("ModifiedDate").ToString())

Loop

The Catch block of the Try...Catch captures any SqlExceptions that occur and displays

the exception message on the console:

Catch ex As SqlException

Console.WriteLine(ex.Message)

The Finally block properly disposes of the SqlDataReader, SqlCommand, and

SqlConnection objects. Finally, a “Press a Key to Continue” message is displayed, and

the application waits for a key press before exiting:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 385

794Xch15final.qxd  3/29/07  4:20 PM  Page 385



Finally

If Not (sqlDr Is Nothing) Then

sqlDr.Close()

End If

If Not (sqlCmd Is Nothing) Then

sqlCmd.Dispose()

End If

If Not (sqlCon Is Nothing) Then

sqlCon.Dispose()

End If

End Try

Console.Write("Press a Key to Continue...")

Console.ReadKey()

End Sub

End Module

End Namespace

The results of the sample application look like the following:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING386

1 Engineering                Research and Development        6/1/1998 12:00:00 AM

2 Tool Design                Research and Development        6/1/1998 12:00:00 AM

3 Sales                      Sales and Marketing             6/1/1998 12:00:00 AM

4 Marketing                  Sales and Marketing             6/1/1998 12:00:00 AM

5 Purchasing                 Inventory Management            6/1/1998 12:00:00 AM

6 Research and Development   Research and Development        6/1/1998 12:00:00 AM

7 Production                 Manufacturing                   6/1/1998 12:00:00 AM

8 Production Control         Manufacturing                   6/1/1998 12:00:00 AM

9 Human Resources            Executive General and Admin...  6/1/1998 12:00:00 AM

10 Finance Executive          General and Administration      6/1/1998 12:00:00 AM

11 Information Services       Executive General and Admin...  6/1/1998 12:00:00 AM

12 Document Control           Quality Assurance               6/1/1998 12:00:00 AM

13 Quality Assurance          Quality Assurance               6/1/1998 12:00:00 AM

14 Facilities and Maintenance Executive General and Admin...  6/1/1998 12:00:00 AM

15 Shipping and Receiving     Inventory Management            6/1/1998 12:00:00 AM

16 Executive                  Executive General and Admin...  6/1/1998 12:00:00 AM

Press a Key to Continue...

794Xch15final.qxd  3/29/07  4:20 PM  Page 386



The example in Listing 15-1 demonstrates the forward-only read-only SqlDataReader,

which provides an efficient interface for retrieving data but is far less flexible than

ADO.NET disconnected datasets. Listing 15-2 demonstrates how to use the

SqlDataAdapter to fill a DataSet and print the results like the previous example. The differ-

ences between Listing 15-2 and the previous example (Listing 15-1) are shown in bold.

Listing 15-2. Using SqlDataReader to Fill a DataSet

Imports System.Data

Imports System.Data.SqlClient

Namespace APress.Samples

Module DataReaderExample

Sub Main()

Dim sqlConStr As String = "DATA SOURCE=(local);" & _

"INITIAL CATALOG=AdventureWorks;" & _

"INTEGRATED SECURITY=SSPI;"

Dim sqlStmt As String = "SELECT DepartmentId, " & _

" Name, " & _

" GroupName, " & _

" ModifiedDate " & _

" FROM HumanResources.Department " & _

" ORDER BY DepartmentId"

Dim sqlDa As SqlClient.SqlDataAdapter = Nothing

Dim ds As DataSet = Nothing

Try

sqlDa = New SqlClient.SqlDataAdapter(sqlStmt, sqlConStr)

ds = New DataSet

sqlDa.Fill(ds)

For Each dr As DataRow In ds.Tables(0).Rows

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}" & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}", dr.Item("DepartmentId").ToString(), _

dr.Item("Name").ToString(), _

dr.Item("GroupName").ToString(), _

dr.Item("ModifiedDate").ToString())

Next

Catch ex As SqlException

Console.WriteLine(ex.Message)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 387

794Xch15final.qxd  3/29/07  4:20 PM  Page 387



Finally

If Not (ds Is Nothing) Then

ds.Dispose()

End If

If Not (sqlDa Is Nothing) Then

sqlDa.Dispose()

End If

End Try

Console.Write("Press a Key to Continue...")

Console.ReadKey()

End Sub

End Module

End Namespace

The first difference is that this sample imports the System.Data namespace, because

the DataSet is a member of System.Data. Again, this is not required, but it does save wear

and tear on your fingers by eliminating the need to prefix System.Data classes and enu-

merations with the namespace:

Imports System.Data

Imports System.Data.SqlClient

The namespace, module, and Main() subroutine definition are the same as the previ-

ous example. The SQL connection string and query string definitions are also the same.

This sample departs from the first listing by declaring a SqlDataAdapter and a DataSet:

Dim sqlDa As SqlClient.SqlDataAdapter = Nothing

Dim ds As DataSet = Nothing

The code to retrieve the data creates a new SqlDataAdapter and DataSet and then

populates the DataSet via the SqlDataAdpater’s Fill method:

Try

sqlDa = New SqlClient.SqlDataAdapter(sqlStmt, sqlConStr)

ds = New DataSet

sqlDa.Fill(ds)

The main loop iterates through each DataRow in the one table of the DataSet and

writes the results to the console:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING388

794Xch15final.qxd  3/29/07  4:20 PM  Page 388



For Each dr As DataRow In ds.Tables(0).Rows

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}" & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}", dr.Item("DepartmentId").ToString(), _

dr.Item("Name").ToString(), _

dr.Item("GroupName").ToString(), _

dr.Item("ModifiedDate").ToString())

Next

The remaining code handles exceptions, performs cleanup by disposing of the

DataSet and SqlDataAdapter, and waits for a key press before exiting:

Catch ex As SqlException

Console.WriteLine(ex.Message)

Finally

If Not (ds Is Nothing) Then

ds.Dispose()

End If

If Not (sqlDa Is Nothing) Then

sqlDa.Dispose()

End If

End Try

Console.Write("Press a Key to Continue...")

Console.ReadKey()

End Sub

End Module

End Namespace

Parameterized Queries
ADO.NET provides a safe method for passing parameters to a stored procedure or a SQL

statement, known as parameterization. The classic VB6/VBScript method of concatenat-

ing parameter values directly into a long SQL query string is inefficient and potentially

unsafe. A concatenated string query might look like this:

Dim sqlstmt As String = "SELECT ContactID, FirstName, MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = N'" & name & "'"

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 389

794Xch15final.qxd  3/29/07  4:20 PM  Page 389



The value of the name variable can contain additional SQL statements, leaving your

SQL Server wide open to SQL injection attacks, as in the following:

name = "'; DELETE FROM Person.Contact; --"

This value for the name variable will result in the following dangerous SQL statement

being executed on the server:

SELECT ContactID, FirstName, MiddleName, LastName

FROM Person.Contact

WHERE LastName = N'';

DELETE FROM Person.Contact; --'

Parameterized queries avoid SQL injection by sending the parameter values to the

server separately from the SQL statement. Listing 15-3 demonstrates a parameterized

query.

Listing 15-3. Parameterized SQL Query

Imports System.Data.SqlClient

Namespace APress.Samples

Module ParameterizedQuery

Sub Main()

Dim name As String = "SMITH"

Dim sqlstmt As String = _

"SELECT ContactID, FirstName, MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @name"

Dim sqlcon As SqlConnection = Nothing

Dim sqlcmd As SqlCommand = Nothing

Dim sqldr As SqlDataReader = Nothing

Try

sqlcon = New SqlConnection("SERVER=(local); " & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

sqlcon.Open()

sqlcmd = New SqlCommand(sqlstmt, sqlcon)

sqlcmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = name

sqldr = sqlcmd.ExecuteReader()

CHAPTER 15 ■ .NET CLIENT PROGRAMMING390

794Xch15final.qxd  3/29/07  4:20 PM  Page 390



Do While (sqldr.Read())

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}," & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}" & ControlChars.Tab, _

sqldr.Item("ContactID").ToString(), _

sqldr.Item("LastName").ToString(), _

sqldr.Item("FirstName").ToString(), _

sqldr.Item("MiddleName").ToString())

Loop

Catch ex As Exception

Console.WriteLine(ex.Message)

Finally

If Not (sqldr Is Nothing) Then

sqldr.Close()

End If

If Not (sqlcmd Is Nothing) Then

sqlcmd.Dispose()

End If

If Not (sqlcon Is Nothing) Then

sqlcon.Dispose()

End If

End Try

Console.WriteLine("Press any key...")

Console.ReadKey()

End Sub

End Module

End Namespace

Listing 15-3 retrieves and prints the contact information for all contacts in the

AdventureWorks Person.Contact table whose last name is SMITH. The sample begins by

importing the System.Data.SqlClient namespace and declaring the APress.Samples name-

space and the VB module and subroutine:

Imports System.Data.SqlClient

Namespace APress.Samples

Module ParameterizedQuery

Sub Main()

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 391

794Xch15final.qxd  3/29/07  4:20 PM  Page 391



The Main() subroutine begins by declaring a variable to hold the parameter value, a

parameterized SQL SELECT statement, and the SqlClient SqlConnection, SqlCommand, and

SqlDataReader objects:

Dim name As String = "SMITH"

Dim sqlstmt As String = _

"SELECT ContactID, FirstName, MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @name"

Dim sqlcon As SqlConnection = Nothing

Dim sqlcmd As SqlCommand = Nothing

Dim sqldr As SqlDataReader = Nothing

The parameterized SQL SELECT statement contains the @name SQL Server named

parameter. Next, a connection is established to the AdventureWorks database:

Try

sqlcon = New SqlConnection("SERVER=(local); " & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

sqlcon.Open()

Then a SQL SELECT query is created and a value is assigned to the @name parameter:

sqlcmd = New SqlCommand(sqlstmt, sqlcon)

sqlcmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = name

Every SqlCommand exposes a SqlParameterCollection property called Parameters. The

Add method of the Parameters collection allows you to add parameters to the SqlCommand.

In this sample, the parameter added is named @name; it is an nvarchar type parameter, and

its length is 50. The parameters in the Parameters collection are passed along to SQL

Server with the SQL statement when the ExecuteReader, ExecuteScalar, ExecuteNonQuery, or

ExecuteXmlReader method of the SqlCommand is called. In this instance the ExecuteReader

method is called to return the results via SqlDataReader:

sqldr = sqlcmd.ExecuteReader()

The Do While loop retrieves and displays each row of the result set from the

SqlDataReader:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING392

794Xch15final.qxd  3/29/07  4:20 PM  Page 392



Do While (sqldr.Read())

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}," & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}" & ControlChars.Tab, _

sqldr.Item("ContactID").ToString(), _

sqldr.Item("LastName").ToString(), _

sqldr.Item("FirstName").ToString(), _

sqldr.Item("MiddleName").ToString())

Loop

The last part of the code handles exceptions, proper disposal of SqlClient objects,

and pausing for a key press:

Catch ex As Exception

Console.WriteLine(ex.Message)

Finally

If Not (sqldr Is Nothing) Then

sqldr.Close()

End If

If Not (sqlcmd Is Nothing) Then

sqlcmd.Dispose()

End If

If Not (sqlcon Is Nothing) Then

sqlcon.Dispose()

End If

End Try

Console.WriteLine("Press any key...")

Console.ReadKey()

End Sub

End Module

End Namespace

■Tip In addition to preventing SQL injection attacks, parameterized queries provide greater efficiency
than concatenated strings. Parameterized queries can take advantage of SQL Server’s built-in query plan
caching mechanisms, while concatenated string queries generally will not be able to take advantage of
cached query plan reuse. Additionally, a parameter can be specified as an OUTPUT parameter when calling
stored procedures. In this case, the stored procedure will return a value to the client application via the
OUTPUT parameter.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 393

794Xch15final.qxd  3/29/07  4:20 PM  Page 393



Nonquery, Scalar, and XML Querying
The examples covered so far in this chapter have all been SQL SELECT queries, which

return rows. SQL statements that do not return result sets are classified by .NET as non-

queries. Examples of nonqueries include UPDATE, INSERT, and DELETE statements, as well as

DDL statements such as CREATE INDEX and ALTER TABLE statements. The .NET Framework

provides the ExecuteNonQuery method of the SqlCommand class to execute nonqueries such

as these. The following is an example of the ExecuteNonQuery method in action:

sqlcmd = New SqlCommand("CREATE TABLE #temp(Id INT NOT NULL PRIMARY KEY, " & _

"Name NVARCHAR(50))", sqlcon)

sqlcmd.ExecuteNonQuery()

The example creates a temporary table called #temp with two columns. Because the

statement is a DDL statement that returns no result set, the ExecuteNonQuery method is

used. In addition to queries that return no result sets, some queries return a result set

consisting of one row by one column. For these queries .NET provides a shortcut method

of retrieving the value. The ExecuteScalar method retrieves the single value returned as

a scalar value in a .NET Object. Using this method you can avoid the hassle of creating a

SqlDataReader and iterating it to retrieve a single value. The following example demon-

strates ExecuteScalar:

sqlcmd = New SqlCommand("SELECT COUNT(*) FROM Person.Contact", sqlcon)

Dim count As Object = sqlcmd.ExecuteScalar()

■Caution If ExecuteScalar is called on a SqlCommand that returns more than one row and/or more
than one column, only the first row of the first column is retrieved. Your best bet is to make sure you only
call ExecuteScalar on queries that return a single scalar value (one row, one column) to avoid possible
confusion and problems down the line.

An additional method of retrieving results in .NET is the ExecuteXmlReader method.

This method of the SqlCommand object uses an XmlReader to retrieve the results of a

SELECT query with the FOR XML option. Listing 15-4 demonstrates a conversion of the

code in Listing 15-3 to use the ExecuteXmlReader method. Differences between this

listing and Listing 15-3 are in bold.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING394

794Xch15final.qxd  3/29/07  4:20 PM  Page 394



Listing 15-4. ExecuteXmlReader Example

Imports System.Data.SqlClient

Imports System.Xml

Namespace APress.Samples

Module XmlReaderQuery

Sub Main()

Dim name As String = "SMITH"

Dim sqlstmt As String = "SELECT ContactID, FirstName, " & _

" COALESCE(MiddleName, '') AS MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @name FOR XML AUTO"

Dim sqlcon As SqlConnection = Nothing

Dim sqlcmd As SqlCommand = Nothing

Dim sqlxr As XmlReader = Nothing

Try

sqlcon = New SqlConnection("SERVER=(local); " & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

sqlcon.Open()

sqlcmd = New SqlCommand(sqlstmt, sqlcon)

sqlcmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = name

sqlxr = sqlcmd.ExecuteXmlReader()

Do While (sqlxr.Read())

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}," & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}" & ControlChars.Tab, _

sqlxr.Item("ContactID").ToString(), _

sqlxr.Item("LastName").ToString(), _

sqlxr.Item("FirstName").ToString(), _

sqlxr.Item("MiddleName").ToString())

Loop

Catch ex As Exception

Console.WriteLine(ex.Message)

Finally

If Not (sqlxr Is Nothing) Then

sqlxr.Close()

End If

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 395

794Xch15final.qxd  3/29/07  4:20 PM  Page 395



If Not (sqlcmd Is Nothing) Then

sqlcmd.Dispose()

End If

If Not (sqlcon Is Nothing) Then

sqlcon.Dispose()

End If

End Try

Console.WriteLine("Press any key...")

Console.ReadKey()

End Sub

End Module

End Namespace

The first difference between this listing and Listing 15-3 is the import of the

System.Xml namespace, since the XmlReader class is being used:

Imports System.Data.SqlClient

Imports System.Xml

The SQL SELECT statement is also slightly different. For one thing, the COALESCE func-

tion is used on the MiddleName column to replace NULL values with an empty string. The

FOR XML clause leaves NULL-valued attributes out of the generated XML by default. Missing

attributes would generate exceptions while trying to display the results. The FOR XML AUTO

clause was also added to the SELECT query to inform SQL Server that it needs to generate

an XML result:

Dim sqlstmt As String = "SELECT ContactID, FirstName, " & _

" COALESCE(MiddleName, '') AS MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @name FOR XML AUTO"

The loop that displays the results is very similar to the previous example as well. The

main difference in this sample is that an XmlReader is used in place of a SqlDataReader:

sqlxr = sqlcmd.ExecuteXmlReader()

Do While (sqlxr.Read())

Console.WriteLine("{0}" & ControlChars.Tab & _

"{1}," & ControlChars.Tab & _

"{2}" & ControlChars.Tab & _

"{3}" & ControlChars.Tab, _

CHAPTER 15 ■ .NET CLIENT PROGRAMMING396

794Xch15final.qxd  3/29/07  4:20 PM  Page 396



sqlxr.Item("ContactID").ToString(), _

sqlxr.Item("LastName").ToString(), _

sqlxr.Item("FirstName").ToString(), _

sqlxr.Item("MiddleName").ToString())

Loop

The remaining code in the sample performs exception handling and proper cleanup,

as in Listing 15-3.

SqlBulkCopy
SQL Server provides tools, such as SQL Server Integration Services (SSIS) and the 

Bulk Copy Program (bcp), to help populate your databases from external data sources.

Sometimes project requirements demand a customized ETL (Extract, Transform,

Load) solution. Generally custom ETL solutions are implemented when special pro-

cessing or transformation of raw input data is required “on the fly.” The .NET 2.0

SqlClient implements the SqlBulkCopy class to make designing efficient ETL applica-

tions easy. SqlBulkCopy can be used to load data from a database table, an XML table,

a flat file, or any other type of data source you choose. The SqlBulkCopy example in

Listing 15-5 loads ZIP code data from a tab-delimited flat file into a SQL Server table.

Part of the source text file is shown in Table 15-4.

Table 15-4. Partial Sample Tab-Delimited ZIP Code Data

ZIP code Latitude Longitude City State

99546 54.2402 -176.7874 ADAK AK

99551 60.3147 -163.1189 AKIACHAK AK

99552 60.3147 -163.1189 AKIAK AK

99553 55.4306 -162.5581 AKUTAN AK

99554 62.1172 -163.2376 ALAKANUK AK

99555 58.9621 -163.1189 ALEKNAGIK AK

The complete sample ZIP code file is included with the downloadable sample source

code ZIP file for this book. The destination table is built with the following script:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 397

794Xch15final.qxd  3/29/07  4:20 PM  Page 397



CREATE TABLE ZipCodes (ZIP CHAR(5) NOT NULL PRIMARY KEY,

Latitude NUMERIC(8, 4) NOT NULL,

Longitude NUMERIC(8, 4) NOT NULL,

City NVARCHAR(50) NOT NULL,

State CHAR(2) NOT NULL)

GO

The code presented in Listing 15-5 uses the SqlBulkCopy class to bulk copy the data

from the flat file into the destination table.

Listing 15-5. SqlBulkCopy Class Example

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.IO

Namespace APress.Samples

Module ZipImport

Sub Main()

Dim sw As New Stopwatch

sw.Start()

Dim rowcount As Integer = DoImport()

sw.Stop()

Console.WriteLine("{0} Rows Imported in {1} Seconds.", _

rowcount, (sw.ElapsedMilliseconds / 1000.0))

Console.WriteLine("Press a Key...")

Console.ReadKey()

End Sub

Function DoImport() As Integer

Dim sqlcon As String = "DATA SOURCE=(local); " & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;"

Dim srcfile As String = "C:\ZIPCodes.txt"

Dim dt As DataTable = Nothing

Using bulkCopier As New SqlClient.SqlBulkCopy(sqlcon)

bulkCopier.DestinationTableName = "ZIPCodes"

Try

dt = LoadSourceFile(srcfile)

bulkCopier.WriteToServer(dt)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING398

794Xch15final.qxd  3/29/07  4:20 PM  Page 398



Catch ex As SqlException

Console.WriteLine(ex.Message)

End Try

End Using

Return dt.Rows.Count

End Function

Function LoadSourceFile(ByVal srcfile As String) As DataTable

Dim loadtable As New DataTable

Dim loadcolumn As New DataColumn

Dim loadrow As DataRow

With loadcolumn

.DataType = Type.GetType("System.String")

.ColumnName = "ZIP"

.Unique = True

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.Double")

.ColumnName = "Latitude"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.Double")

.ColumnName = "Longitude"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.String")

.ColumnName = "City"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 399

794Xch15final.qxd  3/29/07  4:20 PM  Page 399



loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.String")

.ColumnName = "State"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

Using sr As New StreamReader(srcfile)

Dim record As String

record = sr.ReadLine()

Do While Not (record Is Nothing)

Dim s() As String = record.Split(ControlChars.Tab)

loadrow = loadtable.NewRow()

loadrow("ZIP") = s(0)

loadrow("Latitude") = s(1)

loadrow("Longitude") = s(2)

loadrow("City") = s(3)

loadrow("State") = s(4)

loadtable.Rows.Add(loadrow)

record = sr.ReadLine()

Loop

End Using

Return loadtable

End Function

End Module

End Namespace

The code begins by importing required namespaces, declaring the APress.Samples

namespace, and declaring the module name. The System.IO namespace is imported for

the StreamReader:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Imports System.IO

Namespace APress.Samples

Module ZipImport

CHAPTER 15 ■ .NET CLIENT PROGRAMMING400

794Xch15final.qxd  3/29/07  4:20 PM  Page 400



The import module is divided into three subroutines. The Main() subroutine begins

by starting a StopWatch to time the import process. Then it invokes the DoImport() func-

tion that performs the actual import. Finally, the StopWatch is stopped and the number of

rows imported and the number of seconds elapsed are displayed:

Sub Main()

Dim sw As New Stopwatch

sw.Start()

Dim rowcount As Integer = DoImport()

sw.Stop()

Console.WriteLine("{0} Rows Imported in {1} Seconds.", _

rowcount, (sw.ElapsedMilliseconds / 1000.0))

Console.WriteLine("Press a Key...")

Console.ReadKey()

End Sub

The second function, DoImport(), begins by defining the SQL Server connection

string and the source file name:

Function DoImport() As Integer

Dim sqlcon As String = "DATA SOURCE=(local); " & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;"

Dim srcfile As String = "C:\ZIPCodes.txt"

Next DoImport() declares a DataTable to hold the source file in memory and 

a SqlBulkCopy object that will perform the actual bulk copy. DoImport() calls the

LoadSourceFile() function to retrieve a DataTable with the proper structure, populated

with the data from the source file:

Dim dt As DataTable = Nothing

Using bulkCopier As New SqlClient.SqlBulkCopy(sqlcon)

bulkCopier.DestinationTableName = "ZIPCodes"

Try

dt = LoadSourceFile(srcfile)

The populated DataTable is passed into the WriteToServer method of the SqlBulkCopy

object. This method copies all the rows in the DataTable to the SqlBulkCopy object’s speci-

fied destination table:

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 401

794Xch15final.qxd  3/29/07  4:20 PM  Page 401



bulkCopier.WriteToServer(dt)

Catch ex As SqlException

Console.WriteLine(ex.Message)

End Try

End Using

■Tip The Using...End Using statement block is new to VB 2005. This statement block automatically
disposes of the resources under its control. In the sample code provided, the SqlBulkCopy object is placed
under the control of the Using...End Using statement. In practice, Using...End Using behaves just like
a shorthand version of a Try...Catch block with a Finally to dispose of the resource(s) under its control.

The DoImport() function ends by returning the total number of rows imported into

the DataTable:

Return dt.Rows.Count

End Function

The third and final function is the workhorse of the program. The LoadSourceFile()

function accepts the name of the source file to import and returns a properly structured

and populated DataTable. The function begins by setting the structure of the DataTable,

one DataColumn at a time:

Function LoadSourceFile(ByVal srcfile As String) As DataTable

Dim loadtable As New DataTable

Dim loadcolumn As New DataColumn

Dim loadrow As DataRow

With loadcolumn

.DataType = Type.GetType("System.String")

.ColumnName = "ZIP"

.Unique = True

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.Double")

.ColumnName = "Latitude"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING402

794Xch15final.qxd  3/29/07  4:20 PM  Page 402



loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.Double")

.ColumnName = "Longitude"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.String")

.ColumnName = "City"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

loadcolumn = New DataColumn()

With loadcolumn

.DataType = System.Type.GetType("System.String")

.ColumnName = "State"

.Unique = False

End With

loadtable.Columns.Add(loadcolumn)

LoadSourceFile() next opens up the tab-delimited source file as a StreamReader and

reads each line of the file into memory. The tab delimiter is used to split each line of

the file into an array of Strings, and each element of the array is assigned to a column

of the current row. As each row is filled, it is then added to the DataTable. Finally, after

the entire file is read, the full DataTable is returned to the caller as a result:

Using sr As New StreamReader(srcfile)

Dim record As String

record = sr.ReadLine()

Do While Not (record Is Nothing)

Dim s() As String = record.Split(ControlChars.Tab)

loadrow = loadtable.NewRow()

loadrow("ZIP") = s(0)

loadrow("Latitude") = s(1)

loadrow("Longitude") = s(2)

loadrow("City") = s(3)

loadrow("State") = s(4)

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 403

794Xch15final.qxd  3/29/07  4:20 PM  Page 403



loadtable.Rows.Add(loadrow)

record = sr.ReadLine()

Loop

End Using

Return loadtable

End Function

End Module

End Namespace

The results of the SqlBulkCopy example will look like the following:

41831 Rows Imported in 2.15 Seconds.

Press a Key...

A simple SELECT statement verifies the destination table is populated:

SELECT ZIP, Latitude, Longitude, City, State

FROM ZipCodes;

A sample of the results of this query is shown here: 

ZIP     Latitude   Longitude   City       State

00501   40.9223    -72.6371    HOLTSVILLE NY

00544   40.9223    -72.6371    HOLTSVILLE NY

01001   42.1405    -72.7887    AGAWAM     MA

01002   42.3671    -72.4646    AMHERST    MA

01003   42.3695    -72.6359    AMHERST    MA

01004   42.3845    -72.5131    AMHERST    MA

01005   42.3292    -72.1394    BARRE      MA

Multiple Active Result Sets
Prior to SQL Server 2005, client-side applications were limited to one open result set per

connection to SQL Server. The workaround was to process or cancel all open result sets

on a single connection before retrieving a new result set, or to open multiple connec-

tions, each with its own single open result.

SQL Server 2005 introduces multiple active result sets (MARS), new functionality

that allows you to process multiple open result sets over a single connection. 

CHAPTER 15 ■ .NET CLIENT PROGRAMMING404

794Xch15final.qxd  3/29/07  4:20 PM  Page 404



Listing 15-6 is an attempt to open multiple result sets simultaneously over a single con-

nection to SQL Server.

Listing 15-6. Trying to Open Two Result Sets Over a Single Connection

Imports System

Imports System.Data

Imports System.Data.SqlClient

Namespace APress.Samples

Module SqlResultTests

Sub Main()

' Create and open a native SqlClient connection to SQL Server 2005

Dim sqlcon As New SqlConnection("SERVER=(local);" & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

sqlcon.Open()

' Create two SqlCommands to retrieve two result sets

Dim sqlcmd1 As New SqlCommand( _

"SELECT DepartmentID, Name, GroupName " & _

"FROM HumanResources.Department", sqlcon)

Dim sqlcmd2 As New SqlCommand( _

"SELECT ShiftID, Name, StartTime, EndTime " & _

"FROM HumanResources.Shift", sqlcon)

' Open the first result set

Dim sqldr1 As SqlDataReader = sqlcmd1.ExecuteReader()

' Open the second result set

Dim sqldr2 As SqlDataReader = sqlcmd2.ExecuteReader()

' Output the results of the first result set

Console.WriteLine("===========")

Console.WriteLine("Departments")

Console.WriteLine("===========")

While (sqldr1.Read())

Console.WriteLine(String.Format("{0}" & ControlChars.Tab & "{1}" & _

ControlChars.Tab & "{2}", sqldr1.Item("DepartmentID"), _

sqldr1.Item("Name"), sqldr1.Item("GroupName")))

End While

' Output the results of the second result set

Console.WriteLine("======")

Console.WriteLine("Shifts")

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 405

794Xch15final.qxd  3/29/07  4:20 PM  Page 405



Console.WriteLine("======")

While (sqldr2.Read())

Console.WriteLine(String.Format("{0}" & ControlChars.Tab & "{1}" & _

ControlChars.Tab & "{2}" & ControlChars.Tab & "{3}", _

sqldr2.Item("ShiftID"), sqldr2.Item("Name"), _

sqldr2.Item("StartTime"), _

sqldr2.Item("EndTime")))

End While

' Clean up

sqldr1.Close()

sqldr2.Close()

sqlcmd1.Dispose()

sqlcmd2.Dispose()

sqlcon.Dispose()

' Exit the program

Console.WriteLine("Press a key to end.")

Console.ReadKey()

End Sub

End Module

End Namespace

Listing 15-6 begins by importing necessary namespaces and declaring the applica-

tion namespace and module name for the VB console application:

Imports System

Imports System.Data

Imports System.Data.SqlClient

Namespace APress.Samples

Module SqlResultTests

The Sub Main() routine starts by using the SqlClient to open a connection to SQL

Server (using Integrated Security). The connection is then opened, and two SqlCommands

are created on the connection to retrieve the two result sets:

Sub Main()

' Create and open a native SqlClient connection to SQL Server 2005

Dim sqlcon As New SqlConnection("SERVER=(local);" & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;")

sqlcon.Open()

' Create two SqlCommands to retrieve two result sets

Dim sqlcmd1 As New SqlCommand( _

CHAPTER 15 ■ .NET CLIENT PROGRAMMING406

794Xch15final.qxd  3/29/07  4:20 PM  Page 406



"SELECT DepartmentID, Name, GroupName " & _

"FROM HumanResources.Department", sqlcon)

Dim sqlcmd2 As New SqlCommand( _

"SELECT ShiftID, Name, StartTime, EndTime " & _

"FROM HumanResources.Shift", sqlcon)

Then the first result set is opened using a SqlDataReader:

' Open the first result set

Dim sqldr1 As SqlDataReader = sqlcmd1.ExecuteReader()

The next line, which attempts to open a second result set over the open connection,

throws an invalid operation exception, as shown in Figure 15-1:

' Open the second result set

Dim sqldr2 As SqlDataReader = sqlcmd2.ExecuteReader()

The remainder of the code is designed to iterate over the result sets and display the

results on the console. Because of the invalid operation exception that’s thrown, this part

of the code is never reached, however. Take advantage of MARS to allow multiple result

sets to be opened simultaneously over a single connection; just add the

MultipleActiveResultSets=TRUE keyword/value pair to your SqlConnection string. List-

ing 15-7 updates the previous listing to include the MultipleActiveResultSets keyword

in the connection string.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 407

Figure 15-1. Invalid operation exception—trying to open two result sets over one connection

794Xch15final.qxd  3/29/07  4:20 PM  Page 407



Listing 15-7. Enabling MARS on a SqlClient Connection to SQL 2005

Imports System

Imports System.Data

Imports System.Data.SqlClient

Namespace APress.Samples

Module SqlResultTests

Sub Main()

' Create and open a native SqlClient connection to SQL Server 2005

Dim sqlcon As New SqlConnection("SERVER=(local);" & _

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;" & _

"MULTIPLEACTIVERESULTSETS=TRUE;")

sqlcon.Open()

' Create two SqlCommands to retrieve two result sets

Dim sqlcmd1 As New SqlCommand( _

"SELECT DepartmentID, Name, GroupName " & _

"FROM HumanResources.Department", sqlcon)

Dim sqlcmd2 As New SqlCommand( _

"SELECT ShiftID, Name, StartTime, EndTime " & _

"FROM HumanResources.Shift", sqlcon)

' Open the first result set

Dim sqldr1 As SqlDataReader = sqlcmd1.ExecuteReader()

' Open the second result set

Dim sqldr2 As SqlDataReader = sqlcmd2.ExecuteReader()

' Output the results of the first result set

Console.WriteLine("===========")

Console.WriteLine("Departments")

Console.WriteLine("===========")

While (sqldr1.Read())

Console.WriteLine(String.Format("{0}" & ControlChars.Tab & "{1}" & _

ControlChars.Tab & "{2}", sqldr1.Item("DepartmentID"), _

sqldr1.Item("Name"), sqldr1.Item("GroupName")))

End While

CHAPTER 15 ■ .NET CLIENT PROGRAMMING408

794Xch15final.qxd  3/29/07  4:20 PM  Page 408



' Output the results of the second result set

Console.WriteLine("======")

Console.WriteLine("Shifts")

Console.WriteLine("======")

While (sqldr2.Read())

Console.WriteLine(String.Format("{0}" & ControlChars.Tab & "{1}" & _

ControlChars.Tab & "{2}" & ControlChars.Tab & "{3}", _

sqldr2.Item("ShiftID"), sqldr2.Item("Name"), _

sqldr2.Item("StartTime"), _

sqldr2.Item("EndTime")))

End While

' Clean up

sqldr1.Close()

sqldr2.Close()

sqlcmd1.Dispose()

sqlcmd2.Dispose()

sqlcon.Dispose()

' Exit the program

Console.WriteLine("Press a key to end.")

Console.ReadKey()

End Sub

End Module

End Namespace

With MultipleActiveResultSets set to True, the code can successfully open two or

more result sets over a single connection simultaneously. The code succeeds and gener-

ates the output shown in Figure 15-2.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING 409

794Xch15final.qxd  3/29/07  4:20 PM  Page 409



Summary
Although the focus of this book is on server-side development, a good database is only as

useful as the data you get out of it. That’s where the client-side application comes in. This

chapter discussed the options available for connecting to SQL Server 2005 via .NET 2.0.

This chapter specifically talked about the following:

• The .NET System.Data.SqlClient namespace

• The SqlConnection, SqlCommand, SqlDataReader, SqlDataAdapter, XmlReader, and

DataSet classes

• SqlConnection connection string options

• The SqlBulkCopy class for bulk loading data into SQL Server

• Multiple Active Result Sets (MARS), the new SQL Server feature that allows you to

open multiple result sets simultaneously on a single connection

Although .NET offers other options for connecting to SQL Server, including OLE DB

and ODBC, the primary method of connecting to SQL Server (version 7.0 and higher) is

encapsulated in the ADO.NET and the System.Data.SqlClient namespace.

The next chapter will discuss SQL Server 2005 HTTP SOAP endpoints.

CHAPTER 15 ■ .NET CLIENT PROGRAMMING410

Figure 15-2. Results of MARS sample application

794Xch15final.qxd  3/29/07  4:20 PM  Page 410



HTTP Endpoints

SQL Server 2000 offered SOAP (Simple Object Access Protocol) web service support via

SQLXML. The SQL Server 2000 model relied on a loose coupling of SQL Server and Inter-

net Information Services (IIS), making setup and configuration a bit of a hassle. The end

result was that a lot of developers found that creating .NET web services in the middle

tier was a far more flexible (and easier to use) solution than the SQL Server 2000/

SQLXML/IIS model.

SQL Server 2005 provides native HTTP endpoints to expose your stored procedures

as web methods directly from SQL Server via the SOAP protocol. HTTP endpoints are

easy to create and administer, and the SQL Server HTTP endpoints model provides tight

security integration with SQL Server. HTTP endpoints raise the level of SQL Server func-

tionality from just a database management system to a full-fledged application server.

This chapter discusses HTTP endpoint setup and configuration and provides sam-

ples to demonstrate how to use HTTP endpoints from your .NET applications.

What Are HTTP Endpoints?
The W3C defines an endpoint as the following:

An association between a binding and a network address, specified by a URI, that
may be used to communicate with an instance of a service. An endpoint indicates a
specific location for accessing a service using a specific protocol and data format.
(http://www.w3.org/TR/ws-gloss/#defs)

SQL Server provides built-in support for exposing endpoints over the HTTP proto-

col, allowing you to access SQL Server stored procedures as SOAP-based web service

methods.

■Note SQL Server HTTP endpoints are supported on Windows Server 2003 and Windows XP Service
Pack 2. HTTP endpoints are not supported on SQL Server 2005 Express Edition.

411

C H A P T E R  1 6

794Xch16final.qxd  3/29/07  4:19 PM  Page 411



The CREATE ENDPOINT Statement
As the keywords suggest, SQL Server 2005’s CREATE ENDPOINT statement allows you to cre-

ate endpoints. The following is the format for creating an HTTP endpoint that exposes

your stored procedures and user-defined functions as SOAP web service methods:

CREATE ENDPOINT end_point_name

[ AUTHORIZATION login ]

[ STATE = { STARTED | STOPPED | DISABLED } ]

AS HTTP (

PATH = 'url' ,

AUTHENTICATION = ( { BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS } 

[ , ... n ] ) ,

PORTS = ( { CLEAR | SSL } [ , ... n ] )

[ , SITE = { '*' | '+' | 'web_site' } ]

[ , CLEAR_PORT = clear_port ]

[ , SSL_PORT = ssl_port ]

[ , AUTH_REALM = { 'realm' | NONE } ]

[ , DEFAULT_LOGON_DOMAIN = { 'domain' | NONE } ]

[ , COMPRESSION = { ENABLED | DISABLED } ]

)

FOR SOAP (

[ { WEBMETHOD [ 'namespace' . ] 'method_alias'

(

NAME = 'database.schema.proc_name'

[ , SCHEMA = { NONE | STANDARD | DEFAULT } ]

[ , FORMAT = { ALL_RESULTS | ROWSETS_ONLY | NONE } ]

)

} [ , ... n ] ]

[ , BATCHES = { ENABLED | DISABLED } ]

[ , WSDL = { NONE | DEFAULT | 'sp_name' } ]

[ , SESSIONS = { ENABLED | DISABLED } ]

[ , LOGIN_TYPE = { MIXED | WINDOWS } ]

[ , SESSION_TIMEOUT = timeout_interval | NEVER ]

[ , DATABASE = { 'database_name' | DEFAULT } ]

[ , NAMESPACE = { 'namespace' | DEFAULT } ]

[ , SCHEMA = { NONE | STANDARD } ]

[ , CHARACTER_SET = { SQL | XML } ]

[ , HEADER_LIMIT = header_limit ]

);

CHAPTER 16 ■ HTTP ENDPOINTS412

794Xch16final.qxd  3/29/07  4:19 PM  Page 412



■Note The CREATE ENDPOINT statement also supports creating TCP endpoints for Service Broker and
database mirroring applications. I focus on HTTP SOAP endpoint creation in this chapter, but the full syntax
for the CREATE ENDPOINT statement is available in BOL at http://msdn2.microsoft.com/en-us/
library/ms181591.aspx. The full syntax includes all TCP, TSQL, Service Broker, and database mirroring
options.

CREATE ENDPOINT Arguments

The base endpoint arguments for the CREATE ENDPOINT statement are the same regardless

of the chosen protocol and application. The CREATE ENDPOINT arguments for HTTP SOAP

endpoints are listed here:

• end_point_name is the name of the endpoint. This name is used to reference and

manage the endpoint and must be a valid T-SQL identifier.

• login is the SQL Server or Windows login that is assigned ownership of the end-

point at creation time. The default, if the AUTHORIZATION clause is left off, is the

caller. If login is not the same as the caller, the caller must have IMPERSONATE

permission on the specified login.

• The STATE argument specifies the state of the endpoint at creation time. STOPPED

is the default. The following are the valid states:

• STARTED: The endpoint is started and begins listening for connections at

creation time.

• STOPPED: The endpoint is stopped. The server listens for connections on the

endpoint when it is STOPPED but returns errors to the client when it receives

requests.

• DISABLED: The server does not listen for connections on the endpoint, and it

doesn’t respond to requests on the endpoint.

HTTP Protocol Arguments

The HTTP protocol arguments are used in the AS HTTP clause to specify HTTP as the

transport protocol. These arguments include the following:

CHAPTER 16 ■ HTTP ENDPOINTS 413

794Xch16final.qxd  3/29/07  4:19 PM  Page 413



• url is a relative uniform resource locator (URL) specification to help SQL Server

route HTTP SOAP requests appropriately. For the absolute URL http://www.

apress.com/SQLWebService1, the portion specified by PATH = 'url' would be PATH =

'/SQLWebService1'. The portion specified by the SITE option would be

www.apress.com.

• The AUTHENTICATION option specifies how the server should authenticate clients. You

can specify one or more of the following authentication types:

• BASIC authentication is specified by the Internet Engineering Task Force (IETF)

HTTP 1.1 specification (RFC 2617, http://www.ietf.org/rfc/rfc2617.txt). BASIC

authentication is performed via a header containing the Base-64-encoded

username and password. SQL Server requires that the PORTS value be set to SSL,

that the username and password be mapped to a valid Windows login, and

that a Secure Sockets Layer port be used for the connection if BASIC authenti-

cation is specified.

• DIGEST authentication is the second form of authentication specified by the

IETF HTTP 1.1 specification. DIGEST authentication hashes the username and

password using the MD5 one-way hash algorithm before sending it to the

server. The server then compares the hashed credentials sent to it with a hash

of the same credentials stored locally. Windows-based DIGEST authentication

is only supported over domain controllers that are running under Windows

Server 2003, and local user accounts cannot be authenticated using this

method. Only valid Windows domain accounts can be authenticated using

this method.

• NTLM, also known as Windows NT Challenge/Response authentication, is the

authentication method supported by Windows 95, Windows 98, and Windows

NT 4.0 (Server and Workstation). NTLM is a connection-based protocol that is

more secure than either BASIC or DIGEST. Windows 2000 and later provide NTLM

authentication by means of a Security Support Provider Interface (SSPI).

• KERBEROS authentication is an Internet-standard authentication protocol devel-

oped at the Massachusetts Institute of Technology (http://web.mit.edu/

kerberos/). KERBEROS authentication support is provided in Windows 2000 and

later by means of an SSPI. When KERBEROS authentication is specified, a Service

Principal Name (SPN) must be associated with the account it will be running

on. More information on this is available in BOL at http://msdn2.microsoft.com/

en-us/library/ms178119.aspx.

CHAPTER 16 ■ HTTP ENDPOINTS414

794Xch16final.qxd  3/29/07  4:19 PM  Page 414



• INTEGRATED authentication allows the client to request either KERBEROS or NTLM

authentication. If the authentication type specified by the client does not suc-

ceed, the server terminates the connection. The server will not fall back and

attempt to reauthenticate using the other allowable INTEGRATED authentication

method.

More than one authentication method can be specified in a comma-delimited list.

If more than one authentication method is specified, the method specified by the

client is used.

• The PORTS option specifies the type of listening port the endpoint will use. The

following are valid values:

• CLEAR port type specifies incoming requests must use the HTTP (http://)

protocol.

• SSL port type specifies incoming requests must use the Secure HTTP (https://)

protocol.

You may specify both port types for a single endpoint.

• The SITE argument specifies the name of the host computer. The default is the

asterisk (*). The following are valid values:

• The asterisk (*) indicates that the endpoint should listen for all possible host-

names for the computer that are not explicitly reserved. Namespaces may be

explicitly reserved using the sp_reserve_http_namespace stored procedure. This

procedure is described in BOL at http://msdn2.microsoft.com/en-us/library/

ms190614.aspx.

• The plus sign (+) indicates that the endpoint should listen for all possible host-

names for the computer.

• An explicit web_site name indicates the endpoint should listen for the speci-

fied hostname for the computer.

• The CLEAR_PORT option is used when the PORTS = (CLEAR) option has been specified.

The clear_port value is the port number to be used for HTTP communication.

The default is the standard HTTP port number 80.

• The SSL_PORT option is used when the PORTS = (SSL) option has been specified.

The ssl_port value is the port number to be used for Secure HTTP communica-

tion. The default is the standard Secure HTTP port number 443.

CHAPTER 16 ■ HTTP ENDPOINTS 415

794Xch16final.qxd  3/29/07  4:19 PM  Page 415



• The AUTH_REALM option specifies a hint returned to the client (as part of the HTTP

challenge) when AUTHENTICATION = (DIGEST) has been specified. The default is NONE.

• The DEFAULT_LOGON_DOMAIN specifies the default domain to log on when

AUTHENTICATION = (BASIC) is specified. The default is NONE.

• The COMPRESSION option tells SQL Server to return a GZip-compressed response

when a request specifies GZip compression in its headers. The default is DISABLED.

SOAP Arguments

The SOAP arguments are used in the FOR SOAP clause and are specific to the SOAP proto-

col configuration for the endpoint. The following are valid arguments:

• WEBMETHOD specifies an alias for a web method exposed via SOAP. The method_alias

can be preceded by an optional namespace. Note that WEBMETHOD is an optional

argument and you can declare an HTTP SOAP endpoint with no web methods. 

The WEBMETHOD argument has its own list of subarguments:

• Every WEBMETHOD needs a NAME argument to specify the three-part name of

a stored procedure or user-defined function to implement the SOAP web

method. Note that the database and schema parts of the stored procedure

or user-defined function name are mandatory.

• SCHEMA is an optional argument that specifies whether an inline XSD schema

is returned for the current web method in the SOAP response. The following

are valid values:

• NONE specifies no inline XSD schema is returned.

• STANDARD specifies an inline XSD schema is returned.

• DEFAULT specifies the endpoint SCHEMA setting should be used.

• FORMAT specifies how results should be returned to the client. The default is

ALL_RESULTS. The following are valid FORMAT values:

CHAPTER 16 ■ HTTP ENDPOINTS416

794Xch16final.qxd  3/29/07  4:19 PM  Page 416



• ALL_RESULTS specifies that a result set, row count, warnings, and error

messages will all be returned to the client as an array of .NET

System.Objects.

• ROWSETS_ONLY specifies that only result sets are returned to the client.

This option should be used when you want to return a .NET

System.Data.DataSet object instead of an Object array.

• NONE suppresses SOAP-specific markup in the response. In this mode,

the application is responsible for generating well-formed raw XML. The

NONE option has several restrictions and limitations, all of which are

described in detail in BOL at http://msdn2.microsoft.com/en-us/library/

ms181591.aspx.

• The BATCHES argument enables or disables ad hoc SQL queries on the endpoint

via the sql:sqlbatch web method. The sql:sqlbatch method allows parameterized

queries, which I will discuss in the section “Executing HTTP Endpoint Ad Hoc

Queries.” The default is DISABLED.

• The WSDL argument specifies whether the endpoint can generate WSDL documents.

The default value of DEFAULT specifies that a WSDL response is generated for WSDL

queries to this endpoint. A value of NONE specifies that no WSDL response is gener-

ated. Under specific circumstances you can specify a stored procedure (sp_name) to

generate a modified WSDL document if you need custom WSDL support.

• SESSIONS can be either ENABLED or DISABLED. When enabled, the endpoint can treat

multiple SOAP request/response pairs as a single SOAP session. The default is

DISABLED.

• LOGIN_TYPE is the SQL Server authentication type for the endpoint and can be

either MIXED or WINDOWS. The default is WINDOWS. When MIXED is used, the endpoint

must be configured to use SSL.

• SESSION_TIMEOUT specifies an integer time-out value (in seconds) before a SOAP

session expires at the server. The default timeout_interval is 60 seconds. A value

of NEVER indicates SOAP sessions should never time out.

• The DATABASE argument specifies the database context under which the SOAP

method should execute. The default is the default database for the login.

• NAMESPACE specifies a namespace for the endpoint. The default namespace is

http://tempuri.org. The optional namespace, if included in the WEBMETHOD declara-

tion, overrides this NAMESPACE declaration.

CHAPTER 16 ■ HTTP ENDPOINTS 417

794Xch16final.qxd  3/29/07  4:19 PM  Page 417



• The SCHEMA argument specifies whether an inline XSD schema should be included

in the SOAP responses returned to the client. If set to NONE, no inline XSD schema

is included; if set to STANDARD, an inline XSD schema is included in responses. The

value specified for SCHEMA in the WEBMETHOD argument overrides this setting on a

per-method basis, unless the WEBMETHOD specifies DEFAULT, in which case this end-

pointwide setting is used. The STANDARD setting is required to map SOAP results to

a .NET System.Data.DataSet, and the default is STANDARD.

• CHARACTER_SET can specify either the SQL or XML character set. If SQL is specified,

characters that are not valid character references are encoded and returned in the

result. If XML is specified, characters are encoded according to the XML specifica-

tion. The default is XML.

• The HEADER_LIMIT specifies the maximum size of the header section in bytes. The

default is 8,192 bytes. If the header section is larger than this limit, the server will

generate an error.

Creating an HTTP Endpoint
Before we create our first HTTP endpoint, we need to create stored procedures and user-

defined functions that implement the web methods we want to expose. We will create

three methods: two stored procedures, and a scalar user-defined function. We will

expose all three as web methods.

■Note Technically you don’t have to create the stored procedures and/or user-defined functions first. You
can create the endpoint and add methods later, if you prefer, with the ALTER ENDPOINT statement. However,
for our purposes, creating the stored procedures and user-defined functions is as good a place to start as any.

For this demonstration we’ll create a stored procedure named Sales.

GetSalespersonList. This stored procedure will retrieve a list of all AdventureWorks

salespeople’s names and their ID numbers. Listing 16-1 is the Sales.

GetSalespersonList procedure.

CHAPTER 16 ■ HTTP ENDPOINTS418

794Xch16final.qxd  3/29/07  4:19 PM  Page 418



Listing 16-1. Sales.GetSalespersonList Stored Procedure

USE AdventureWorks;

GO

CREATE PROCEDURE Sales.GetSalespersonList

AS

BEGIN

SELECT s.SalesPersonID,

s.LastName + ', ' + s.FirstName + ' ' + 

COALESCE(s.MiddleName, '') AS FullName

FROM Sales.vSalesPerson s

ORDER BY s.LastName, s.FirstName, s.MiddleName;

END;

GO

While the Sales.GetSalespersonList stored procedure does not accept any para-

meters, the second method will. For the second method you’ll define another stored

procedure that accepts a single salesperson ID number as a parameter and returns a

summary listing of that salesperson’s sales. Listing 16-2 is the Sales.GetSalespersonSales

procedure listing.

Listing 16-2. Sales.GetSalespersonSales Procedure

USE AdventureWorks;

GO

CREATE PROCEDURE Sales.GetSalespersonSales (@SalespersonID INT)

AS

BEGIN

SELECT soh.SalesOrderID,

soh.CustomerID,

soh.OrderDate,

soh.SubTotal

FROM Sales.SalesOrderHeader soh

WHERE soh.SalesPersonID = @SalespersonID

ORDER BY soh.SalesOrderID;

END;

GO

The third method is a scalar user-defined function that also accepts an Adventure-

Works salesperson’s ID number and returns the total dollar amount of sales for that

salesperson. Listing 16-3 is the listing for the Sales.GetSalesTotal UDF.

CHAPTER 16 ■ HTTP ENDPOINTS 419

794Xch16final.qxd  3/29/07  4:19 PM  Page 419



Listing 16-3. Sales.GetSalesTotal Scalar User-Defined Function

USE AdventureWorks;

GO

CREATE FUNCTION Sales.GetSalesTotal(@SalespersonID INT)

RETURNS MONEY

AS

BEGIN

RETURN (

SELECT SUM(soh.SubTotal)

FROM Sales.SalesOrderHeader soh

WHERE SalesPersonID = @SalespersonID

);

END;

GO

■Note SQL Server HTTP endpoints support exposing stored procedures and scalar UDFs as web methods.
Table-valued functions and extended stored procedures, however, cannot be exposed as web methods.

Now that three methods have been implemented, it’s time to turn them into SOAP

web methods with the CREATE ENDPOINT statement. The CREATE ENDPOINT statement I’ll use

to expose these three methods is shown in Listing 16-4.

Listing 16-4. CREATE ENDPOINT Statement

USE AdventureWorks;

GO

CREATE ENDPOINT AdvSalesEndpoint

STATE = STARTED

AS HTTP

(

PATH = N'/AdvSalesSql',

AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),

SITE = N'*'

)

CHAPTER 16 ■ HTTP ENDPOINTS420

794Xch16final.qxd  3/29/07  4:19 PM  Page 420



FOR SOAP

(

WEBMETHOD N'GetSalespersonList'

(

NAME = N'AdventureWorks.Sales.GetSalespersonList',

FORMAT = ROWSETS_ONLY

),

WEBMETHOD N'GetSalesPersonSales'

(

NAME = N'AdventureWorks.Sales.GetSalesPersonSales',

FORMAT = ROWSETS_ONLY

),

WEBMETHOD 'GetSalesTotal'

(

NAME = N'AdventureWorks.Sales.GetSalesTotal'

),

WSDL = DEFAULT,

DATABASE = N'AdventureWorks',

SCHEMA = STANDARD

);

GO

The endpoint definition begins by defining the alias AdvSalesEndpoint and setting the

endpoint state to STARTED:

CREATE ENDPOINT AdvSalesEndpoint

STATE = STARTED

The AS HTTP clause declares HTTP as the endpoint transport protocol. The HTTP

arguments define the PATH as /AdvSalesSql and set the AUTHENTICATION type to INTEGRATED.

Also the PORTS are set to CLEAR and the SITE is set to *. HTTP port number 80 is used by

default:

AS HTTP

(

PATH = N'/AdvWorksSql',

AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),

SITE = N'*'

)

CHAPTER 16 ■ HTTP ENDPOINTS 421

794Xch16final.qxd  3/29/07  4:19 PM  Page 421



■Tip You may run into problems using the default port if you are running IIS and SQL Server 2005 on the
same computer. IIS has a habit of intercepting web requests directed at the server before SQL Server can
get to them. If you do run into these problems, you can turn IIS off or use a different port number for your
HTTP Endpoint. In the previous example you could change the HTTP endpoint port number by using the HTTP
CLEAR_PORT argument.

The FOR SOAP clause is where the web methods are mapped to the stored procedures

and user-defined functions via the WEBMETHOD arguments:

FOR SOAP

(

WEBMETHOD N'GetSalespersonList'

(

NAME = N'AdventureWorks.Sales.GetSalespersonList',

FORMAT = ROWSETS_ONLY

),

WEBMETHOD N'GetSalesPersonSales'

(

NAME = N'AdventureWorks.Sales.GetSalesPersonSales',

FORMAT = ROWSETS_ONLY

),

WEBMETHOD N'GetSalesTotal'

(

NAME = N'AdventureWorks.Sales.GetSalesTotal'

),

The first WEBMETHOD argument maps a web method named GetSalespersonList to the

AdventureWorks.Sales.GetSalespersonList stored procedure. The second and third

WEBMETHOD arguments map web methods named GetSalesPersonSales and GetSalesTotal

to their respective procedures and user-defined functions. For the two stored procedures,

the FORMAT is defined as ROWSETS_ONLY, which allows you to retrieve the results as .NET

System.Data.DataSets. The remaining arguments set endpointwide settings. The WSDL

argument specifies that the endpoint can generate default WSDL documents. The

DATABASE argument sets the default database context to the AdventureWorks database,

and the SCHEMA argument is set to STANDARD so that inline XSD schemas will be included

in the SOAP responses:

WSDL = DEFAULT,

DATABASE = N'AdventureWorks',

SCHEMA = STANDARD

);

GO

CHAPTER 16 ■ HTTP ENDPOINTS422

794Xch16final.qxd  3/29/07  4:19 PM  Page 422



You can use the SSMS Object Explorer to verify that the HTTP endpoint was created.

It will be listed in the Endpoints folder under Server Objects. The newly created HTTP

endpoint is shown in Figure 16-1.

WSDL Documents
The W3C WSDL standard describes an “XML language for describing Web services”

(http://www.w3.org/TR/2006/CR-wsdl20-20060327/). SQL Server HTTP endpoints can gen-

erate two types of WSDL documents for your web services: a standard WSDL document

or a simple WSDL document. The CREATE ENDPOINT statement in Listing 16-4 sets the WSDL

argument to DEFAULT, so the endpoint can generate WSDL documents as required. The

WSDL documents can be viewed by pointing Internet Explorer at the endpoint URL with

a ?wsdl or a ?wsdlsimple parameter like this:

http://localhost/AdvSalesSql?wsdl

http://localhost/AdvSalesSql?wsdlsimple

The full URL includes the website name, the port number (if ports other than the

defaults are used), the relative URL path, and a ?wsdl or ?wsdlsimple parameter. The ?wsdl

parameter tells SQL Server to generate a fully decorated XSD schema with complex types,

while ?wsdlsimple uses standard simple XSD data types.

Figure 16-2 shows a portion of the WSDL document generated by the sample HTTP

endpoint.

CHAPTER 16 ■ HTTP ENDPOINTS 423

Figure 16-1. HTTP endpoint in SSMS Object Explorer

794Xch16final.qxd  3/29/07  4:19 PM  Page 423



■Tip Internet Explorer is a handy way to view WSDL documents for your HTTP endpoints, but they can be
retrieved by other applications using standard HTTP GET requests.

WSDL document details are available from the W3C Web Services Description Work-

ing Group home page at http://www.w3.org/2002/ws/desc/.

Creating a Web Service Consumer
Now that you have an HTTP SOAP endpoint with exposed methods configured, it’s time

to create a web service consumer. Here you’ll create a simple web services client with

Visual Basic. The first step is to create a new Windows Application project in Visual Stu-

dio. Then you’ll drag a DataGridView, a ComboBox, a TextBox, and a Button control onto the

form, as shown in Figure 16-3.

CHAPTER 16 ■ HTTP ENDPOINTS424

Figure 16-2. Sample WSDL document

794Xch16final.qxd  3/29/07  4:19 PM  Page 424



The next step is to add a web reference to the project. Right-click in the Visual Studio

Solution Explorer and choose Add Web Reference from the pop-up menu. The Add Web

Reference window then requires you to type in the URL to retrieve the WSDL document

from the endpoint and press the Go button. In this instance the URL is http://localhost/

AdvSalesSql?wsdl. The three web methods exposed by the HTTP endpoint will be dis-

played. Next, click the Add Reference button to add the web reference. Figure 16-4 shows

the Add Web Reference window.

After the Windows form is set up and the web reference has been added to the proj-

ect, it’s a simple matter to add the code to reference the web methods from your Visual

Basic code. There are four basic steps that need to be performed to use a web method:

1. Create a web service proxy.

2. Set the proxy security credentials.

3. Invoke the web method.

4. Retrieve the results.

CHAPTER 16 ■ HTTP ENDPOINTS 425

Figure 16-3. Web services consumer form design

794Xch16final.qxd  3/29/07  4:19 PM  Page 425



All of these steps are shown in the VB code in Listing 16-5.

Listing 16-5. VB Code for Web Service Consumer

Imports System.Data

Imports System.Net

Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As _

System.EventArgs) _

Handles MyBase.Load

' Create a web service proxy using the SQL Server HTTP endpoint

Dim proxy As New localhost.AdvSalesEndpoint

' Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials

CHAPTER 16 ■ HTTP ENDPOINTS426

Figure 16-4. Add Web Reference window

794Xch16final.qxd  3/29/07  4:19 PM  Page 426



' Bind the combo box to the results of the web method call

Me.cboSalesPerson.ValueMember = "SalespersonId"

Me.cboSalesPerson.DisplayMember = "FullName"

' Call the web method

Me.cboSalesPerson.DataSource = proxy.GetSalespersonList().Tables(0)

End Sub

Private Sub cboSalesPerson_SelectedIndexChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cboSalesPerson.SelectedIndexChanged

' Create a web service proxy using the SQL Server HTTP endpoint

Dim proxy As New localhost.AdvSalesEndpoint

' Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials

' Bind the data grid view to the results of the web method call

Me.dgvSales.DataSource = proxy.GetSalesPersonSales(New _

SqlTypes.SqlInt32(Me.cboSalesPerson.SelectedValue)).Tables(0)

' Populate the text box with the results of the second web method call

Me.txtTotalSales.Text = proxy.GetSalesTotal(New _

SqlTypes.SqlInt32(Me.cboSalesPerson.SelectedValue)).Value.ToString("C")

End Sub

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs)  _

Handles btnExit.Click

' Exit the application

Application.Exit()

End Sub

End Class

The form Load event creates a web service proxy, binds the ComboBox, and then calls

the GetSalesPersonList web method to populate the ComboBox. Creating the proxy is as

simple as declaring a new instance of the proxy class:

CHAPTER 16 ■ HTTP ENDPOINTS 427

794Xch16final.qxd  3/29/07  4:19 PM  Page 427



' Create a web service proxy using the SQL Server HTTP endpoint

Dim proxy As New localhost.AdvSalesEndpoint

The security credentials are set using System.Net.CredentialCache.

DefaultCredentials. This assigns the credentials of the currently logged-in user to the

proxy object:

' Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials

The ComboBox ValueMember and DisplayMember are assigned the names of the columns

in the table returned by the web method:

' Bind the combo box to the results of the web method call

Me.cboSalesPerson.ValueMember = "SalespersonId"

Me.cboSalesPerson.DisplayMember = "FullName"

Finally, the GetSalespersonList web method is called, and the results are bound to the

ComboBox:

' Call the web method

Me.cboSalesPerson.DataSource = proxy.GetSalespersonList().Tables(0)

End Sub

The ComboBox SelectedIndexChanged event is up next. This event, like the form Load

event, creates a web service proxy object and assigns the appropriate security credentials

to it using System.Net.CredentialCache.DefaultCredentials:

Private Sub cboSalesPerson_SelectedIndexChanged(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles cboSalesPerson.SelectedIndexChanged

' Create a web service proxy using the SQL Server HTTP endpoint

Dim proxy As New localhost.AdvSalesEndpoint

' Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials

Next, the SelectedIndexChanged event passes the ID number of the selected salesper-

son to the GetSalesPersonSales web method. It binds the DataGridView to the results

returned by the web method:

CHAPTER 16 ■ HTTP ENDPOINTS428

794Xch16final.qxd  3/29/07  4:19 PM  Page 428



' Bind the data grid view to the results of the web method call

Me.dgvSales.DataSource = proxy.GetSalesPersonSales(New _

SqlTypes.SqlInt32(Me.cboSalesPerson.SelectedValue)).Tables(0)

Then the GetSalesTotal web method is called with the selected salesperson ID as a

parameter. The result is formatted as a currency string and displayed in the TextBox:

' Populate the text box with the results of the second web method call

Me.txtTotalSales.Text = proxy.GetSalesTotal(New _

SqlTypes.SqlInt32(Me.cboSalesPerson.SelectedValue)).Value.ToString("C")

End Sub

Finally, the btnExit.Click event exits the application:

Private Sub btnExit_Click(ByVal sender As System.Object, ByVal e As _

System.EventArgs)  _

Handles btnExit.Click

' Exit the application

Application.Exit()

End Sub

Figure 16-5 shows a screenshot of the web service consumer application in action.

CHAPTER 16 ■ HTTP ENDPOINTS 429

Figure 16-5. Web method consumer example in action

794Xch16final.qxd  3/29/07  4:19 PM  Page 429



In the sample application, selecting a different salesperson from the ComboBox auto-

matically updates the DataGridView and Total Sales TextBox with results from the proper

web methods.

As you can see, SQL Server HTTP endpoints make it easy to create and access stored

procedure and user-defined function results from user applications.

Executing HTTP Endpoint Ad Hoc Queries

In addition to exposing stored procedures and user-defined functions, SQL Server

HTTP endpoints provide the capability of performing ad hoc queries via web methods.

You can enable ad hoc querying by specifying BATCHES = ENABLED when you create an

HTTP endpoint.

■Caution Ad hoc querying of SQL Server via web methods is a powerful feature, but it is also potentially
dangerous. If you enable this feature, take extra care to make sure your server is properly secured.

Listing 16-6 creates an HTTP endpoint. No methods are declared explicitly, but the

SOAP argument BATCHES is set to ENABLED. Because of this setting, a web method named

sqlbatch is implicitly exposed.

Listing 16-6. Endpoint Declared with Ad Hoc Querying Enabled

CREATE ENDPOINT AdvAdHocEndpoint

STATE = STARTED

AS HTTP (

PATH = N'/AdvAdhocSql',

AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),

SITE = N'*'

)

FOR SOAP (

WSDL = DEFAULT,

DATABASE = N'AdventureWorks',

SCHEMA = STANDARD,

BATCHES = ENABLED

);

GO

CHAPTER 16 ■ HTTP ENDPOINTS430

794Xch16final.qxd  3/29/07  4:19 PM  Page 430



Apart from the fact that this endpoint contains no explicit WEBMETHOD declarations,

and the PATH argument is different, this declaration is very similar to the previous exam-

ple. Once the endpoint is created, a web service consumer can be created to perform ad

hoc queries against it. We’ll start by creating a simple VB form like before. This one needs

a TextBox, a Button, and a DataGridView control. It looks like Figure 16-6.

The sqlbatch Method

When you add the web reference to http://localhost/AdvAdhocSql?wsdl, the only method

exposed is the sqlbatch web method. This method takes the following form:

sqlbatch ( BatchCommands As String,

Parameters As ArrayOfSqlParameter ) As SqlResultStream

BatchCommands is a string containing the T-SQL statements/queries to be executed.

These queries can be parameterized.

Parameters is an array of proxyclass.SqlParameter objects, where proxyclass is your

web services proxy class. If your proxy class is named localhost (the default), a

SqlParameter object would be declared as the following:

Dim p As New localhost.SqlParameter

The Parameters array represents the parameters to pass in for a parameterized

query. If your query does not have parameters, pass Nothing for Parameters. Each

proxyclass.SqlParameter object exposes a set of properties that need to be set prior to

use. Table 16-1 lists some of the most common proxyclass.SqlParameter attributes.

CHAPTER 16 ■ HTTP ENDPOINTS 431

Figure 16-6. Web method consumer form in design mode

794Xch16final.qxd  3/29/07  4:19 PM  Page 431



Table 16-1. Common proxyclass.SqlParameter Properties

Name Type Description

direction proxyclass.ParameterDirection Specifies whether the parameter is an Input
parameter or an InputOutput parameter.

maxLength Long Specifies the max length of the parameter
Value.

name String Specifies the name of the parameter. Because
of XML naming convention requirements, you
must leave off the leading @ in the parameter
name.

precision Byte Specifies the parameter Value precision.

scale Byte Specifies the parameter Value scale.

sqlDbType proxyclass.sqlDbTypeEnum Determines the type of the parameter. Valid
values include all of the SQL valid T-SQL data
types, including Int, VarChar, Char, etc.

Value Object Specifies the value assigned to the parameter.

The VB code to create a proxyclass.SqlParameter and assign it a varchar string value

might look like this:

Dim p As New localhost.SqlParameter

p.sqlDbType = localhost.sqlDbTypeEnum.VarChar

p.maxLength = 50

p.name = "LastName"

p.Value = "Smith"

The sample in Listing 16-7 demonstrates how to use the sqlbatch web method to per-

form a simple parameterized query using the HTTP endpoint created in Listing 16-6.

Listing 16-7. sqlbatch Web Method Client

Imports System.Net

Imports System.Data

Public Class Form1

Private Sub btnQuery_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles btnQuery.Click

CHAPTER 16 ■ HTTP ENDPOINTS432

794Xch16final.qxd  3/29/07  4:19 PM  Page 432



' Create web services proxy class

Dim proxy As New localhost.AdvAdHocEndpoint

' Assign credentials to proxy

proxy.Credentials = CredentialCache.DefaultCredentials

' Define the parameterized query here. Notice the leading @ is left on

' the parameter name in the query

Dim sql As String = "SELECT ContactID, FirstName, MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @LastName"

' Create a parameter for the parameterized query

Dim p As New localhost.SqlParameter

p.sqlDbType = localhost.sqlDbTypeEnum.VarChar

p.maxLength = 50

' Notice the leading @ is stripped off the parameter name here

p.name = "LastName"

p.Value = txtLastName.Text

' Call the sqlbatch web method with the query string and parameter array.

' Notice we have to create an array and put the parameter in it here

Dim ds As DataSet = CType(proxy.sqlbatch(sql, _

New localhost.SqlParameter() {p})(0), DataSet)

' Bind the data grid view to the result

dgvResults.DataSource = ds.Tables(0)

End Sub

End Class

The btnQuery.Click event handler begins like the previous examples. It creates an

instance of the web service proxy class and assigns the appropriate security creden-

tials to it:

' Create web services proxy class

Dim proxy As New localhost.AdvAdHocEndpoint

' Assign credentials to proxy

proxy.Credentials = CredentialCache.DefaultCredentials

CHAPTER 16 ■ HTTP ENDPOINTS 433

794Xch16final.qxd  3/29/07  4:19 PM  Page 433



Next, it defines a parameterized query string. Notice that the parameter in the query

string still has the leading @ sign:

' Define the parameterized query here. Notice the leading @ is left on

' the parameter name in the query

Dim sql As String = "SELECT ContactID, FirstName, MiddleName, LastName " & _

" FROM Person.Contact " & _

" WHERE LastName = @LastName"

Then it creates a single parameter for the query and sets its properties accordingly:

' Create a parameter for the parameterized query

Dim p As New localhost.SqlParameter

p.sqlDbType = localhost.sqlDbTypeEnum.VarChar

p.maxLength = 50

' Notice the leading @ is stripped off the parameter name here

p.name = "LastName"

p.Value = txtLastName.Text

Notice that in the name property of the parameter, the leading @ sign is stripped off.

The next step is to actually call the sqlbatch method and cast the result to a DataSet. The

result is actually returned as an array of Objects, and the Object at element zero of the

array is the DataSet. This could have been combined with the next step, but I split it up

here to make it easier to read:

' Call the sqlbatch web method with the query string and parameter array.

' Notice we have to create an array and put the parameter in it here

Dim ds As DataSet = CType(proxy.sqlbatch(sql, _

New localhost.SqlParameter() { p })(0), DataSet)

■Note The second parameter of the sqlbatch method is always an array of SqlParameter objects.
Even if you are passing just one SqlParameter, it still needs to be a member of an array. In the example,
I create an array of SqlParameter and initialize it on the fly with the following statement:
New localhost.SqlParameter() { p }.

When using web methods, such as sqlbatch, Visual Studio provides IntelliSense sup-

port, as shown in Figure 16-7.

CHAPTER 16 ■ HTTP ENDPOINTS434

794Xch16final.qxd  3/29/07  4:19 PM  Page 434



The final step is to bind the results to the DataGridView. The actual rows returned by

the query are in DataTable number 0 of the DataSet:

' Bind the data grid view to the result

dgvResults.DataSource = ds.Tables(0)

To test the application, just enter a last name in the TextBox and press the Query but-

ton. All contacts from the Person.Contact table with that last name are returned, as shown

in Figure 16-8.

CHAPTER 16 ■ HTTP ENDPOINTS 435

Figure 16-7. Web method IntelliSense support

Figure 16-8. Ad hoc query example in action

794Xch16final.qxd  3/29/07  4:19 PM  Page 435



Altering and Dropping Endpoints
You can drop an endpoint with the DROP ENDPOINT statement. The following is the format:

DROP ENDPOINT end_point_name;

The end_point_name is the name you gave the endpoint when you created it. To drop

the endpoint you created for ad hoc queries, you would issue a DROP ENDPOINT statement

like this:

DROP ENDPOINT AdvAdHocEndpoint;

Altering an endpoint requires the ALTER ENDPOINT statement. This statement has a

format very similar to CREATE ENDPOINT. The following is the format:

ALTER ENDPOINT end_point_name

[ AUTHORIZATION login ]

[ STATE = { STARTED | STOPPED | DISABLED } ]

AS HTTP (

[ [,] PATH = 'url' ]

[ [,] AUTHENTICATION = ( { BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS }

[ , ... n ] ) ]

[ [,] PORTS = ( { CLEAR | SSL } [ , ... n ] ) ]

[ [,] SITE = { '*' | '+' | 'web_site' } ]

[ [,] CLEAR_PORT = clear_port ]

[ [,] SSL_PORT = ssl_port ]

[ [,] AUTH_REALM = { 'realm' | NONE } ]

[ [,] DEFAULT_LOGON_DOMAIN = { 'domain' | NONE } ]

[ [,] COMPRESSION = { ENABLED | DISABLED } ]

)

FOR SOAP (

[ [,] { ADD WEBMETHOD [ 'namespace' . ] 'method_alias'

(

NAME = 'database.schema.proc_name'

[ , SCHEMA = { NONE | STANDARD | DEFAULT } ]

[ , FORMAT = { ALL_RESULTS | ROWSETS_ONLY | NONE } ]

)

} [ , ... n ] ]

CHAPTER 16 ■ HTTP ENDPOINTS436

794Xch16final.qxd  3/29/07  4:19 PM  Page 436



[ [,] { ALTER WEBMETHOD [ 'namespace' . ] 'method_alias'

(

NAME = 'database.schema.proc_name'

[ , SCHEMA = { NONE | STANDARD | DEFAULT } ]

[ , FORMAT = { ALL_RESULTS | ROWSETS_ONLY | NONE } ]

)

} [ , ... n ] ]

[ [,] DROP WEBMETHOD [ 'namespace' . ] 'method_alias' [ , ... n ] ]

[ [,] BATCHES = { ENABLED | DISABLED } ]

[ [,] WSDL = { NONE | DEFAULT | 'sp_name' } ]

[ [,] SESSIONS = { ENABLED | DISABLED } ]

[ [,] LOGIN_TYPE = { MIXED | WINDOWS } ]

[ [,] SESSION_TIMEOUT = timeout_interval | NEVER ]

[ [,] DATABASE = { 'database_name' | DEFAULT } ]

[ [,] NAMESPACE = { 'namespace' | DEFAULT } ]

[ [,] SCHEMA = { NONE | STANDARD } ]

[ [,] CHARACTER_SET = { SQL | XML } ]

[ [,] HEADER_LIMIT = header_limit ]

);

All the base HTTP endpoint arguments for ALTER ENDPOINT are the same as for CREATE

ENDPOINT. These are described earlier in this chapter, so I won’t relist them all here. The

HTTP-specific arguments are also the same.

The SOAP-specific arguments are where ALTER ENDPOINT and CREATE ENDPOINT part

ways. With ALTER ENDPOINT you can use ADD WEBMETHOD to add a new web method to your

endpoint; ALTER WEBMETHOD to alter an existing web method; or DROP WEBMETHOD to drop an

existing web method. The parameters for ADD WEBMETHOD and ALTER WEBMETHOD are the same

as for CREATE ENDPOINT’s WEBMETHOD argument. The DROP WEBMETHOD accepts a method_alias.

All of the endpointwide SOAP-specific ALTER ENDPOINT arguments are the same as for

CREATE ENDPOINT.

■Tip When you issue an ALTER ENDPOINT, only include arguments that you actually want to change for the
endpoint. Any arguments you leave out of the ALTER ENDPOINT statement will retain their current settings.

CHAPTER 16 ■ HTTP ENDPOINTS 437

794Xch16final.qxd  3/29/07  4:19 PM  Page 437



Summary
In this chapter I discussed SQL Server 2005 HTTP SOAP endpoints, including the

following:

• Constructing the CREATE ENDPOINT statement

• Exposing stored procedures and scalar user-defined functions as web methods,

both with and without parameters

• Adding a web service proxy to your Visual Studio project

• Accessing the HTTP endpoint web methods from Visual Basic

• Performing ad hoc queries over HTTP endpoints with the sqlbatch method

• Altering and dropping HTTP endpoints

At this point, I’d like to take a moment to thank you for reading this book. I hope you

had as much fun reading it as I did writing it for you. I also hope that you find the content

useful and informative, and I wish you well in your SQL Server 2005 development and all

your other endeavors.

CHAPTER 16 ■ HTTP ENDPOINTS438

794Xch16final.qxd  3/29/07  4:19 PM  Page 438



T-SQL Keywords

SQL Server 2005 has 179 reserved keywords. These keywords define the grammar of

T-SQL. It’s highly recommended that you avoid using these reserved keywords as identi-

fiers when possible, although you can use them as identifiers by delimiting them (with

brackets or quotes). The following is a list of the T-SQL reserved keywords:

439

A P P E N D I X  A

ADD

ALL

ALTER

AND

ANY

AS

ASC

AUTHORIZATION

BACKUP

BEGIN

BETWEEN

BREAK

BROWSE

BULK

BY

CASCADE

CASE

CHECK

CHECKPOINT

CLOSE

CLUSTERED

COALESCE

COLLATE

COLUMN

COMMIT

COMPUTE

CONSTRAINT

CONTAINS

CONTAINSTABLE

CONTINUE

CONVERT

CREATE

CROSS

CURRENT

CURRENT_DATE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

DATABASE

DBCC

DEALLOCATE

DECLARE

DEFAULT

DELETE

DENY

DESC

DISK

794XappAfinal.qxd  3/29/07  5:02 PM  Page 439



DISTINCT

DISTRIBUTED

DOUBLE

DROP

DUMMY

DUMP

ELSE

END

ERRLVL

ESCAPE

EXCEPT

EXEC

EXECUTE

EXISTS

EXIT

EXTERNAL

FETCH

FILE

FILLFACTOR

FOR

FOREIGN

FREETEXT

FREETEXTTABLE

FROM

FULL

FUNCTION

GOTO

GRANT

GROUP

HAVING

HOLDLOCK

IDENTITY

IDENTITY_INSERT

IDENTITYCOL

IF

IN

INDEX

INNER

INSERT

INTERSECT

INTO

IS

JOIN

KEY

KILL

LEFT

LIKE

LINENO

LOAD

NATIONAL

NOCHECK

NONCLUSTERED

NOT

NULL

NULLIF

OF

OFF

OFFSETS

ON

OPEN

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

OPTION

OR

ORDER

OUTER

OVER

PERCENT

PIVOT

PLAN

APPENDIX A ■ T-SQL KEYWORDS440

794XappAfinal.qxd  3/29/07  5:02 PM  Page 440



PRECISION

PRIMARY

PRINT

PROC

PROCEDURE

PUBLIC

RAISERROR

READ

READTEXT

RECONFIGURE

REFERENCES

REPLICATION

RESTORE

RESTRICT

RETURN

REVERT

REVOKE

RIGHT

ROLLBACK

ROWCOUNT

ROWGUIDCOL

RULE

SAVE

SCHEMA

SELECT

SESSION_USER

SET

SETUSER

SHUTDOWN

SOME

STATISTICS

SYSTEM_USER

TABLE

TABLESAMPLE

TEXTSIZE

THEN

TO

TOP

TRAN

TRANSACTION

TRIGGER

TRUNCATE

TSEQUAL

UNION

UNIQUE

UNPIVOT

UPDATE

UPDATETEXT

USE

USER

VALUES

VARYING

VIEW

WAITFOR

WHEN

WHERE

WHILE

WITH

WRITETEXT

APPENDIX A ■ T-SQL KEYWORDS 441

794XappAfinal.qxd  3/29/07  5:02 PM  Page 441



T-SQL reserves several symbols for use as math, comparison, bitwise, and other

operators. Table A-1 lists these symbols.

Table A-1. T-SQL Operators

Operator Description

+ Add, unary plus, string concatenation

- Subtract, unary minus

* Multiply

/ Divide

% Modulo

& Bitwise AND

| Bitwise OR

^ Bitwise XOR (Exclusive OR)

~ Bitwise NOT

= Equals

> Greater than

< Less than

>=, !< Greater than or equal to, not less than

<=, !> Less than or equal to, not greater than

<>, != Not equal to

-- Single-line comment

/* ... */ Multiline comment

Nonreserved keywords in T-SQL include those that are part of the T-SQL grammar

but are not reserved by the language itself. These keywords include system and other

built-in function names, data types, and other keywords that are part of the definition of

various T-SQL statements.

T-SQL can use the location of these keywords in T-SQL statements to determine the

context in which they are being used, so they do not have to be reserved. The following is

a list of these keywords:

APPENDIX A ■ T-SQL KEYWORDS442

794XappAfinal.qxd  3/29/07  5:02 PM  Page 442



■Caution Although you can use most of these nonreserved keywords as identifiers, it is not recom-
mended. Some of these keywords cannot effectively be used as identifiers, although they are not considered
“reserved” by Microsoft. An example is the @@ERROR system function, which cannot be redeclared as a vari-
able in your T-SQL code.

APPENDIX A ■ T-SQL KEYWORDS 443

$PARTITION

@@CONNECTIONS

@@CPU_BUSY

@@CURSOR_ROWS

@@DATEFIRST

@@DBTS

@@ERROR

@@FETCH_STATUS

@@IDENTITY

@@IDLE

@@IO_BUSY

@@LANGID

@@LANGUAGE

@@LOCK_TIMEOUT

@@MAX_CONNECTIONS

@@MAX_PRECISION

@@NESTLEVEL

@@OPTIONS

@@PACK_RECEIVED

@@PACK_SENT

@@PACKET_ERRORS

@@PROCID

@@REMSERVER

@@ROWCOUNT

@@SERVERNAME

@@SERVICENAME

@@SPID

@@TEXTSIZE

@@TIMETICKS

@@TOTAL_ERRORS

@@TOTAL_READ

@@TOTAL_WRITE

@@TRANCOUNT

@@VERSION

ABS

ACOS

AGGREGATE

APP_NAME

APPLICATION

APPLOCK_MODE

794XappAfinal.qxd  3/29/07  5:02 PM  Page 443



APPLOCK_TEST

ASCII

ASIN

ASSEMBLY

ASSEMBLYPROPERTY

ASYMKEY_ID

ASYMMETRIC

ATAN

ATN2

AVG

BIGINT

BINARY

BINARY_CHECKSUM

BINDING

BIT

CAST

CATALOG

CATCH

CEILING

CERT_ID

CERTIFICATE

CERTPROPERTY

CHAR

CHARINDEX

CHECKSUM

CHECKSUM_AGG

COL_LENGTH

COL_NAME

COLLATIONPROPERTY

COLLECTION

COLUMNPROPERTY

COLUMNS_UPDATED

CONTEXT_INFO

CONTRACT

CONVERSATION

COS

COT

COUNT

COUNT_BIG

CREDENTIAL

CURRENT_REQUEST_ID

CURSOR_STATUS

DATABASE_PRINCIPAL_ID

DATABASEPROPERTY

DATABASEPROPERTYEX

DATALENGTH

DATEADD

DATEDIFF

DATENAME

DATEPART

APPENDIX A ■ T-SQL KEYWORDS444

794XappAfinal.qxd  3/29/07  5:02 PM  Page 444



DAY

DB_ID

DB_NAME

DECIMAL

DECRYPTBYASYMKEY

DECRYPTBYCERT

DECRYPTBYKEY

DECRYPTBYKEYAUTOASYMKEY

DECRYPTBYKEYAUTOCERT

DECRYPTBYPASSPHRASE

DEGREES

DENSE_RANK

DIALOG

DIFFERENCE

DISABLE

ENABLE

ENCRYPTBYASYMKEY

ENCRYPTBYCERT

ENCRYPTBYKEY

ENCRYPTBYPASSPHRASE

ENDPOINT

ERROR_LINE

ERROR_MESSAGE

ERROR_NUMBER

ERROR_PROCEDURE

ERROR_SEVERITY

ERROR_STATE

EVENT

EVENTDATA

EXP

FILE_ID

FILE_IDEX

FILE_NAME

FILEGROUP_ID

FILEGROUP_NAME

FILEGROUPPROPERTY

FILEPROPERTY

FLOAT

FLOOR

FORMATMESSAGE

FULLTEXT

FULLTEXTCATALOGPROPERTY

FULLTEXTSERVICEPROPERTY

GET

GET_TRANSMISSION_STATUS

GETANSINULL

GETDATE

GETUTCDATE

GO

GROUPING

APPENDIX A ■ T-SQL KEYWORDS 445

794XappAfinal.qxd  3/29/07  5:02 PM  Page 445



HAS_DBACCESS

HAS_PERMS_BY_NAME

HASHBYTES

HOST_ID

HOST_NAME

IDENT_CURRENT

IDENT_INCR

IDENT_SEED

IMAGE

INDEX_COL

INDEXKEY_PROPERTY

INDEXPROPERTY

INT

IS_MEMBER

IS_SRVROLEMEMBER

ISDATE

ISNULL

ISNUMERIC

JOB

KEY_GUID

KEY_ID

LEN

LOG

LOG10

LOGIN

LOGINPROPERTY

LOWER

LTRIM

MASTER

MAX

MESSAGE

MIN

MONEY

MONTH

MOVE

NCHAR

NEWID

NEWSEQUENTIALID

NOTIFICATION

NTEXT

NTILE

NUMERIC

NVARCHAR

OBJECT_DEFINITION

OBJECT_ID

OBJECT_NAME

OBJECTPROPERTY

OBJECTPROPERTYEX

APPENDIX A ■ T-SQL KEYWORDS446

794XappAfinal.qxd  3/29/07  5:02 PM  Page 446



ORIGINAL_LOGIN

OUTPUT

PARSENAME

PARTITION

PATINDEX

PERMISSIONS

PI

POWER

PUBLISHINGSERVERNAME

QUERY

QUEUE

QUOTENAME

RADIANS

RAND

RANK

REAL

RECEIVE

REMOTE

REPLACE

REPLICATE

REVERSE

ROLE

ROUND

ROUTE

ROW_NUMBER

ROWCOUNT_BIG

RTRIM

SCHEMA_ID

SCHEMA_NAME

SCHEME

SCOPE_IDENTITY

SEND

SERVERPROPERTY

SERVICE

SESSIONPROPERTY

SIGN

SIGNATURE

SIGNBYASYMKEY

SIGNBYCERT

SIN

SMALLDATETIME

SMALLINT

SMALLMONEY

SOUNDEX

SPACE

SQL_VARIANT

SQL_VARIANT_PROPERTY

SQRT

APPENDIX A ■ T-SQL KEYWORDS 447

794XappAfinal.qxd  3/29/07  5:02 PM  Page 447



SQUARE

STATS

STATS_DATE

STDEV

STDEVP

STR

STUFF

SUBSCRIPTION

SUBSTRING

SUM

SUSER_ID

SUSER_NAME

SUSER_SID

SUSER_SNAME

SYMMETRIC

SYNONYM

TAN

TERTIARY_WEIGHTS

TEXT

TEXTPTR

TEXTVALID

TIMER

TIMESTAMP

TINYINT

TRIGGER_NESTLEVEL

TRY

TYPE

TYPE_ID

TYPE_NAME

TYPEPROPERTY

UNICODE

UNIQUEIDENTIFIER

UPPER

USER_ID

USER_NAME

VAR

VARBINARY

VARCHAR

VARP

VERIFYSIGNEDBYASMKEY

VERIFYSIGNEDBYCERT

WORK

XACT_STATE

XML

XML_SCHEMA_NAMESPACE

XMLNAMESPACES

YEAR

APPENDIX A ■ T-SQL KEYWORDS448

794XappAfinal.qxd  3/29/07  5:02 PM  Page 448



In addition to these T-SQL-specific keywords, ANSI SQL:2003 defines several addi-

tional keywords as reserved; ODBC has its own set of reserved keywords (important if you

are using ODBC for client connectivity); and Microsoft defines several keywords that may

be reserved in future versions of SQL Server. Additional care should be taken if you are

using a client application with its own list of reserved keywords, such as Microsoft Access.

A complete list of SQL Server 2005, ODBC, and other keywords that may be reserved in

the future is available in BOL at http://msdn2.microsoft.com/en-us/library/ms189822.aspx.

APPENDIX A ■ T-SQL KEYWORDS 449

794XappAfinal.qxd  3/29/07  5:02 PM  Page 449



794XappAfinal.qxd  3/29/07  5:02 PM  Page 450



XQuery Data Types

XQuery is a strongly typed language, and the XDM and XML Schema specifications

specify several data types that XQuery relies on. This appendix lists the built-in XML

Schema–defined data types available to SQL Server XQuery. The W3C provides a com-

plete data type hierarchy diagram in the W3C “XML Schema Part 2: Datatypes Second

Edition” specification at http://www.w3.org/TR/xmlschema-2/. The chart in Figure B-1

shows the hierarchy of XML Schema data types supported by SQL Server 2005.

Table B-1 describes the SQL Server–supported XML Schema data types.

Table B-1. XQuery XML Schema Data Types

Name Description

Base Types

xs:anySimpleType Represents all simple built-in types.

xs:anyType Represents all simple and complex built-in types.

Temporal (Time) Types

xs:date Represents a Gregorian calendar–based date value exactly one day in length.
Represented in the format yyyy-mm-dd[time_zone]. Time_zone can be a capi-
tal Z for zero-meridian (UTC), or in the format +/-hh:mm to represent a UTC
offset. An example of a valid xs:date is 2006-12-25Z, which represents
December 25, 2006, UTC time. For SQL Server, the time_zone component is
mandatory.

xs:dateTime Represents a Gregorian calendar–based date and time value with precision
to 1/1,000th of a second. The format is 
yyyy-mm-ddThh:mm:ss.sss[time_zone]. Time is specified using a 24-hour
clock. As with xs:date, time_zone can be a capital Z (UTC) or a UTC offset in
the format +/-hh:mm. A valid xs:dateTime value is 
2006-10-30T13:00:59.500-05:00, which represents October 30, 2006,
1:00:59.5 PM, U.S. Eastern Standard Time. For SQL Server, the time_zone
component is mandatory for xs:dateTime values.

xs:duration Represents a Gregorian calendar–based temporal (time-based) duration.
Represented as PyyyyYmmMddDThhHmmMss.sssS. P0010Y03M12DT00H00M00.000S,
for instance, represents 10 years, 3 months, 12 days.

Continued
451

A P P E N D I X  B

794XappBfinal.qxd  3/29/07  4:58 PM  Page 451



Table B-1. Continued

Name Description

xs:gDay Represents a Gregorian calendar–based day. The format is 
---dd[time_zone] (notice the three preceding hyphen characters).
The time_zone is optional. A valid xs:gDay value is ---09Z, which stands for the
ninth day of the month, UTC time zone.

xs:gMonth Represents a Gregorian calendar–based month. The format is 
--mm[time_zone] (notice the two preceding hyphen characters). Time_zone is
optional. A valid xs:gMonth value is --12, which stands for December.

xs:gMonthDay Represents a Gregorian calendar–based month and day. The format is 
--mm-dd[time_zone] (notice the two preceding hyphens). The time_zone for this
data type is optional. A valid xs:gMonthDay value is --02-29 for February 29.

xs:gYear Represents a Gregorian calendar–based year. The format is yyyy[time_zone].
The time_zone is optional. The year can also have a preceding minus sign indi-
cating a negative year (B.C.E.) as opposed to a positive (C.E.) date. A valid
xs:gYear value is -0044 for 44 B.C.E. Notice that all four digits are required in
the year representation, even for years that can be normally represented with
less than four digits.

xs:gYearMonth Represents a Gregorian calendar–based year and month. The format is
yyyy-mm[time_zone]. The time_zone for this data type is optional and can be Z
or a UTC offset. A valid xs:gYearMonth value is 2001-01 for January 2001.

xs:time Represents a time value with precision to 1/1,000th of a second, using a 24-
hour clock representation. The format is hh:mm:ss.sss[time_zone]. As with
other temporal data types, time_zone can be Z (UTC) or a UTC offset in the for-
mat +/-hh:mm. A valid xs:time value is 23:59:59.000-06:00, which represents
11:59:59 PM, U.S. Central Standard Time. The canonical representation of mid-
night in 24-hour format is 00:00:00.

■Tip SQL Server converts all temporal typed values to UTC, so querying the value xs:dateTime
("2006-10-30T13:00:59.500-05:00") returns 2006-10-30T18:00:59.5Z.

Binary Types

xs:base64Binary Represents Base-64-encoded binary data. Base-64-encoding symbols are
defined in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt) as letters A–Z and
a–z, and 0–9, +, /, and trailing = signs. Whitespace characters are also allowed.
An example of a valid xs:base64Binary value is the following:
QVByZXNzIEJvb2tzIEFuZCBTUUwgU2VydmVyIDIwMDU=.

xs:hexBinary Represents hexadecimal-encoded binary data. The symbols defined for encod-
ing data in hexadecimal format are 0–9, A–F, and a–f. Uppercase and lowercase
letters A–F are considered equivalent by this data type. A valid xs:hexBinary
value is 6170726573732E636F6D.

APPENDIX B ■ XQUERY DATA TYPES452

794XappBfinal.qxd  3/29/07  4:58 PM  Page 452



Name Description

Boolean Type

xs:boolean Represents a boolean binary truth value. The values supported are true,
false, or 1 (true), 0 (false). An example of a valid xs:boolean value is true.

Numeric Types

xs:byte Represents an 8-bit signed integer in the range -128 to +127.

xs:decimal Represents an exact decimal value, up to 38 digits in length. These numbers
can have up to 28 digits before the decimal point and up to 10 digits after the
decimal point. A valid xs:decimal value is 8372.9381.

xs:double Represents a double-precision floating point value patterned after the IEEE
standard representation for floating point types. The representation of values
is similar to xs:float values, nE[+/-]e, where n is the mantissa followed by
the letter E or e and an exponent e. The range of valid values for xs:double is
approximately -1.79E+308 to -2.23E-308, 0, and +2.23E-308 to +1.79E+308.

xs:float Represents an approximate single-precision floating point value per the IEEE
754-1985 standard. The format for values of this type is nEe, where n is a deci-
mal mantissa followed by the letter E or e and an exponent e. The value
represents n·10e. The range for xs:float values is approximately -3.4028e+38
to -1.401298E-45, 0, and +1.401298E-45 to +3.4028e+38. The special values -
INF and +INF represent negative and positive infinity. SQL Server does not
support the XQuery-specified special value NaN, which stands for “Not a
Number.” A valid xs:float value is 1.98E+2.

■Tip The xs:double and xs:float data types are considered approximate data types. There are many
floating point numbers that can be represented exactly in decimal (base-10) notation, but that cannot be
represented exactly in the binary (base-2) notation used by the IEEE 754 standard. These numbers are con-
verted and stored as an approximation of the exact value. Do not rely on the exactness of the xs:double
and xs:float floating point data types. Also, the IEEE standard specifies the special symbols +INF, -INF,
and NaN, which represent positive infinity, negative infinity, and “not a number,” respectively. SQL Server
XQuery floating point types support +INF and -INF, but no support is provided for NaN.

xs:int Represents a 32-bit signed integer in the range -2147483648 to +2147483647.

xs:integer Represents an integer value up to 28 digits in length. A valid xs:integer value
is 76372.

xs:long Represents a 64-bit signed integer in the range -9223372036854775808 to
+9223372036854775807.

xs:negativeInteger Represents a negative nonzero integer value derived from the xs:integer
type. It can be up to 28 digits in length.

Continued

APPENDIX B ■ XQUERY DATA TYPES 453

794XappBfinal.qxd  3/29/07  4:58 PM  Page 453



Table B-1. Continued

Name Description

xs:nonNegativeInteger Represents a positive or zero integer value derived from the
xs:integer type. It can be up to 28 digits in length.

xs:nonPositiveInteger Represents a negative or zero integer value derived from the
xs:integer type. It can be up to 28 digits in length.

xs:positiveInteger Represents a positive nonzero integer value derived from the
xs:integer type. It can be up to 28 digits in length.

xs:short Represents a 16-bit signed integer in the range -37268 to +32767.

xs:unsignedByte Represents an unsigned 8-bit integer in the range 0 to +255.

xs:unsignedInt Represents an unsigned 32-bit integer in the range 0 to +4294967295.

xs:unsignedLong Represents an unsigned 64-bit integer in the range 0 to
+18446744073709551615.

xs:unsignedShort Represents an unsigned 16-bit integer in the range 0 to +65535.

String Types

xs:ENTITY Is equivalent to the ENTITY type from the XML 1.0 standard. The lexical
space has the same construction as an xs:NCName.

xs:ENTITIES Is a space-separated list of ENTITY types.

xs:ID Is equivalent to the ID attribute type from the XML 1.0 standard. An
xs:ID value has the same lexical construction as an xs:NCName.

xs:IDREF Represents the IDREF attribute type from the XML 1.0 standard. The
lexical space has the same construction as an xs:NCName.

xs:IDREFS Is a space-separated list of IDREF attribute types.

xs:language Is a language identifier string. This data type represents natural lan-
guage identifiers as specified by RFC 3066 (http://www.ietf.org/rfc/
rfc3066.txt). Language identifiers must conform to the regular
expression pattern [a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*. An example
of a valid language identifier is tlh, which is the ISO 639-2 identifier for
the Klingon language.

xs:Name Is an XML name string. A name string must match the XML-specified
production for Name. Per the standard, a Name must begin with a letter,
an underscore, or a colon and may then contain a combination of let-
ters, numbers, underscores, colons, periods, hyphens, and various
other characters designated in the XML standard as combining char-
acters and extenders. Refer to the XML standard at http://
www.w3.org/TR/2000/WD-xml-2e-20000814#NT-Name for specific infor-
mation about these additional allowable Name characters.

xs:NCName Is a noncolonized name. The format for an xs:NCName is the same as for
xs:Name but without colon characters.

APPENDIX B ■ XQUERY DATA TYPES454

794XappBfinal.qxd  3/29/07  4:58 PM  Page 454



Name Description

xs:NMTOKEN Is an NMTOKEN type from the XML 1.0 standard. An xs:NMTOKEN value is
composed of any combination of letters, numbers, underscores, colons,
periods, hyphens, and XML combining characters and extenders.

xs:NMTOKENS Is a space-separated list of xs:NMTOKEN values.

xs:normalizedString Is an XML whitespace normalized string. A whitespace normalized string
is one that does not contain the whitespace characters #x9 (tab), #xA (line
feed), or #xD (carriage return).

xs:string Is an XML character string.

xs:token Is an XML whitespace normalized string with the following additional
restrictions on #x20 (space) characters: 1) they can have no leading or
trailing spaces, and 2) they cannot contain any sequences of two space
characters in a row.

APPENDIX B ■ XQUERY DATA TYPES 455

794XappBfinal.qxd  3/29/07  4:58 PM  Page 455



APPENDIX B ■ XQUERY DATA TYPES456

Figure B-1. SQL Server XQuery data types hierarchy

794XappBfinal.qxd  3/29/07  4:58 PM  Page 456



XQuery Terms

XQuery support in SQL Server 2005 brings with it a whole new vocabulary. This appen-

dix lists some of the commonly used XQuery terms and their definitions.

Atomic data types, list data types, and union data types
Atomic data types are indivisible data types that derive from the xs:anyAtomicType

type. Examples include xs:boolean, xs:date, and xs:integer. List data types are types

that are constructed of sequences of other types. Union data types are constructed

from the ordered union of two or more data types, or a restricted subset of a data

type. The “XML Schema 1.1 Part 2: Datatypes” specification working draft (http://

www.w3.org/TR/xmlschema11-2/#ordinary-built-ins) defines no built-in union data

types.

Axis
An axis specifier indicates the relationship between the nodes selected by the loca-

tion step and the context node. Examples of axis specifiers include child, parent, and

ancestor.

Comments
XQuery comments are denoted by the (: and :) delimiters in XQuery queries. XQuery

comments are ignored during processing and should not be confused with XML com-

ment nodes.

Context item expression
This expression evaluates to the context node.

Context node
The context node is the node currently being processed. Each node of each set/

sequence returned by a step in a location path is used in turn as a context node. Sub-

sequent steps define their axes in relation to the current context node. For instance,

with the sample XPath expression /Root/Person/Address, the Root node is the first con-

text node. All Person nodes returned below Root become the context node in turn, and

the Address nodes are retrieved relative to these context nodes.

457

A P P E N D I X  C

794XappCfinal.qxd  3/29/07  4:55 PM  Page 457



Empty sequence
This is an XPath 2.0 and XQuery 1.0 sequence containing zero items.

F&O
This is XQuery Functions and Operators, as defined by the “XQuery 1.0 and 

XPath 2.0 Functions and Operators” specification, available at http://

www.w3.org/TR/xquery-operators/.

Facets
Facets are schema components used to constrain data types. A couple of commonly

used facets are whiteSpace and length, which control how whitespace in string values is

handled, and restrict values to a specific number of units in length, respectively.

Filter expression
This is a primary expression followed by zero or more predicates.

FLWOR expression
FLWOR is an acronym for the XQuery keywords for, let, where, order by, and return.

FLWOR expressions support iteration and binding variables.

General comparisons
These are existentially quantified XQuery comparisons that may be applied to

operand sequences of any length. In general comparisons, the nodes are atomized

and the atomic values of both operands are compared using value comparisons. If

any of the value comparisons evaluate to true, the result is true.

Location paths
The path is an XPath or XQuery expression that addresses a specific subset of nodes

in an XML document. The location path is a series of steps separated by the solidus

(forward slash) character, evaluated from left to right. Each step generates a

sequence of items. Location paths can be relative or absolute. Absolute location

paths begin with a single solidus character; relative location paths do not.

Node comparisons
Node comparisons in XQuery compare nodes by their document order or identity.

Nodes
XPath 2.0 and XQuery 1.0 treat XML data as a hierarchical tree structure, similar to

(but not exactly the same as) the Document Object Model (DOM) that web program-

mers often use to manipulate HTML and XML. XPath and XQuery XML trees are

composed of the seven types of nodes defined in the W3C XQuery 1.0 and XPath 2.0

Data Model (XDM), full descriptions of which are available at http://www.w3.org/

TR/xpath-datamodel/#node-identity. These node types include the following:

APPENDIX C ■ XQUERY TERMS458

794XappCfinal.qxd  3/29/07  4:55 PM  Page 458



• Attribute nodes, which represent XML attributes

• Comment nodes, which encapsulate XML comments

• Document nodes, which encapsulate XML documents

• Element nodes, which encapsulate XML elements

• Namespace nodes, which represent the binding of a namespace URI to a name-

space prefix (or the default namespace)

• Processing instruction nodes, which encapsulate processing instructions (PIs)

• Text nodes, which encapsulate XML character content

XPath 1.0 defines the node types it uses in Part 5 of the XPath 1.0 specification. The

main difference between XPath 1.0 nodes and XDM nodes is that XPath 1.0 defines the

root node of a document in place of the document nodes of the XDM. Another major

difference is that in the XDM, element nodes are either explicitly or implicitly (based

on content) assigned type information.

Node test
A node test is a condition that must be true for each node generated by a step. A node

test can be based on the name of the node, the kind of node, or the type of node.

Optional occurrence indicator
This is the ? character, when used in conjunction with the cast as keywords. It indi-

cates that the empty sequence is allowed as a result.

Path expression
See location paths.

Predicates
A predicate is an expression enclosed in brackets ([]) that is used to filter a sequence.

The predicate expressions are generally comparison expressions of some sort (equal-

ity, inequality, etc.).

Primary expression
This is the basic primitive of the XQuery language. A primary expression can be a lit-

eral, a variable reference, a context item expression, a data type constructor, or a

function call.

Sequences
XPath 2.0 and XQuery 1.0 define sequences as ordered collections of zero or more

items. The term ordered is important here, as it differentiates a sequence from a set,

APPENDIX C ■ XQUERY TERMS 459

794XappCfinal.qxd  3/29/07  4:55 PM  Page 459



which, as most T-SQL programmers know (or quickly come to realize), is unordered.

XPath 1.0 defined its results in terms of node sets, which are unordered and cannot

contain duplicates. XQuery changes this terminology to node sequences, which recog-

nize the importance of node order in XML and can contain duplicates.

Shredding
This is the process of converting XML data to relational style rows and columns.

SOAP
Simple Object Access Protocol is an XML-based protocol designed for exchanging

structured information in distributed, decentralized environments.

Step
A step in XQuery is composed of an axis, a node test, and zero or more predicates.

Each step is a part of a path expression that generates a sequence of items and then

filters the sequence.

Value comparison
This is a comparison of single values in XQuery.

W3C
The World Wide Web Consortium is a standards body with the stated mission of

“developing interoperable technologies . . . to lead the Web to its full potential.”

XDM
The XQuery 1.0 and XPath 2.0 Data Model is defined by the W3C at http://www.w3.org/

TR/2006/PR-xpath-datamodel-20061121/.

XML
Extensible Markup Language is a restricted form of SGML (Standardized General

Markup Language) designed to be easily served, received, and processed on the Web.

XML Schema
Part 2 of the XML Schema 1.1 standard defines XML Schema data types, which are the

basic data types utilized by XQuery.

XPath
XML Path Language is an expression language designed to allow processing of values

that conform to the XDM.

XQuery
XML Query Language is an XML query language designed to retrieve and interpret

data from diverse XML sources.

APPENDIX C ■ XQUERY TERMS460

794XappCfinal.qxd  3/29/07  4:55 PM  Page 460



XSL
Extensible Stylesheet Language is a language for expressing style sheets, consisting of

a language for transforming XML documents, and an XML vocabulary for specifying

formatting semantics. 

XSLT
XSL Transformations is a language for transforming XML documents into other XML

documents. For instance, XSLT can be used to transform an XML document into an

XHTML document.

APPENDIX C ■ XQUERY TERMS 461

794XappCfinal.qxd  3/29/07  4:55 PM  Page 461



794XappCfinal.qxd  3/29/07  4:55 PM  Page 462



Selected T-SQL Source Code
Listings

This appendix contains the complete program listings for some of the longer sample

programs in Chapters 5, 6, 8, 12, and 16.

Chapter 5
Listing 5-3. Creating a Numbers Table

-- This SELECT INTO statement uses the T-SQL IDENTITY function to quickly

-- build a Numbers table

SELECT TOP 10000 IDENTITY(INT, 1, 1) AS Num

INTO dbo.Numbers

FROM sys.columns a

CROSS JOIN sys.columns b;

GO

-- A table isn't a table without a Primary Key

ALTER TABLE dbo.Numbers

ADD CONSTRAINT PK_Num PRIMARY KEY CLUSTERED (Num);

Listing 5-4. NYSIIS UDF

-- Create the NYSIIS replacement rules table

CREATE TABLE dbo.NYSIIS_Replacements

(Location NVARCHAR(10) NOT NULL,

NGram NVARCHAR(10) NOT NULL,

Replacement NVARCHAR(10) NOT NULL,

PRIMARY KEY (Location, NGram));

463

A P P E N D I X  D

794XappDfinal.qxd  3/29/07  4:53 PM  Page 463



-- The end-of-name n-gram rules

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'AY', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'DT', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'EE', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'EY', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'IE', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'IY', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'ND', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'NT', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'OY', N'YY');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'RD', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'RT', N'DD');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'End', N'UY', N'YY');

-- The middle-of-name n-gram rules

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'A', N'A');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'E', N'A');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'I', N'A');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'K', N'C');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'M', N'N');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'O', N'A');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'Q', N'G');

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS464

794XappDfinal.qxd  3/29/07  4:53 PM  Page 464



INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'U', N'A');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'Z', N'S');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'AW', N'AA');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'EV', N'AF');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'EW', N'AA');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'IW', N'AA');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'KN', N'NN');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'OW', N'AA');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'PH', N'FF');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'UW', N'AA');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Mid', N'SCH', N'SSS');

-- The start-of-name n-gram rules

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'K', N'C');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'KN', N'NN');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'PF', N'FF');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'PH', N'FF');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'MAC', N'MCC');

INSERT INTO NYSIIS_Replacements (Location, NGram, Replacement)

VALUES (N'Start', N'SCH', N'SSS');

GO

CREATE FUNCTION dbo.fnNYSIIS (@Name NVARCHAR(50))

RETURNS NVARCHAR(50)

WITH RETURNS NULL ON NULL INPUT, SCHEMABINDING

AS

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 465

794XappDfinal.qxd  3/29/07  4:53 PM  Page 465



BEGIN

DECLARE @Result NVARCHAR(50);   -- This will contain our end result

SELECT @Result = UPPER(@Name);

-- Replace the start n-gram

SELECT TOP 1 @Result = STUFF(@Result, 1, LEN(NGram), Replacement)

FROM dbo.NYSIIS_Replacements

WHERE Location = N'Start'

AND SUBSTRING(@Result, 1, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

-- Replace the end n-gram

SELECT TOP 1 @Result = STUFF(@Result, LEN(@Result) - LEN(NGram) + 1,

LEN(NGram), Replacement)

FROM dbo.NYSIIS_Replacements

WHERE Location = N'End'

AND SUBSTRING(@Result, LEN(@Result) - LEN(NGram) + 1, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

-- Store the first letter of the name

DECLARE @first_letter NCHAR(1)

SELECT @first_letter = SUBSTRING(@Result, 1, 1);

-- Replace all middle n-grams

DECLARE @replacement NVARCHAR(10);

DECLARE @i INT;

SELECT @i = 1;

WHILE @i <= LEN(@Result)

BEGIN

SELECT @replacement = NULL;

-- Grab the middle-of-name replacement n-gram

SELECT TOP 1 @replacement = Replacement

FROM dbo.NYSIIS_Replacements

WHERE Location = N'Mid'

AND SUBSTRING(@Result, @i, LEN(NGram)) = NGram

ORDER BY LEN(NGram) DESC;

-- If we found a replacement, apply it

IF @replacement IS NOT NULL

SELECT @Result = STUFF(@Result, @i, LEN(@replacement), @replacement);

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS466

794XappDfinal.qxd  3/29/07  4:53 PM  Page 466



-- Move on to the next n-gram

SELECT @i = @i + COALESCE(LEN(@replacement), 1);

END;

-- Replace the first character with the first letter we saved at the start

SELECT @Result = STUFF(@Result, 1, 1, @first_letter);

-- Here we apply our special rules for the 'H' character

SELECT @Result =

STUFF(@Result, Num, 1,

CASE SUBSTRING(@Result, Num, 1)

WHEN N'H'

THEN

CASE

WHEN SUBSTRING(@Result, Num + 1, 1)

NOT IN (N'A', N'E', N'I', N'O', N'U')

OR SUBSTRING(@Result, Num - 1, 1)

NOT IN (N'A', N'E', N'I', N'O', N'U')

THEN SUBSTRING(@Result, Num - 1, 1)

ELSE N'H'

END

ELSE SUBSTRING(@Result, Num, 1)

END)

FROM dbo.Numbers

WHERE Num <= LEN(@Result);

-- Here we replace the first letter of any sequence of two side-by-side 

-- duplicate letters with a period

SELECT @Result =

STUFF(@Result, Num, 1,

CASE SUBSTRING(@Result, Num, 1)

WHEN SUBSTRING(@Result, Num + 1, 1) THEN N'.'

ELSE SUBSTRING(@Result, Num, 1)

END)

FROM dbo.Numbers

WHERE Num <= LEN(@Result);

-- Next we replace all periods '.' with an empty string ''

SELECT @Result = REPLACE(@Result, N'.', N'');

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 467

794XappDfinal.qxd  3/29/07  4:53 PM  Page 467



-- Remove trailing 'S' characters

WHILE RIGHT(@Result, 1) = N'S'

SELECT @Result = STUFF(@Result, LEN(@Result), 1, N'');

-- Remove trailing vowels

WHILE RIGHT(@Result, 1) = N'A'

SELECT @Result = STUFF(@Result, LEN(@Result), 1, N'');

RETURN @Result;

END;

GO

Listing 5-5. Pull Product List Multistatement Table-Valued Function

CREATE FUNCTION dbo.fnProductPullList()

RETURNS @result TABLE (

SalesOrderID INT NOT NULL,

ProductID INT NOT NULL,

LocationID SMALLINT NOT NULL,

Shelf NVARCHAR(10) NOT NULL,

Bin TINYINT NOT NULL,

QuantityInBin SMALLINT NOT NULL,

QuantityOnOrder SMALLINT NOT NULL,

QuantityToPull SMALLINT NOT NULL,

PartialFillFlag CHAR(1) NOT NULL,

PRIMARY KEY (SalesOrderID, ProductID, LocationID, Shelf, Bin))

WITH SCHEMABINDING

AS

BEGIN

INSERT INTO @result (

SalesOrderID,

ProductID,

LocationID,

Shelf,

Bin,

QuantityInBin,

QuantityOnOrder,

QuantityToPull,

PartialFillFlag)

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS468

794XappDfinal.qxd  3/29/07  4:53 PM  Page 468



SELECT Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty,

COUNT(*) AS PullQty,

CASE WHEN COUNT(*) < Order_Details.OrderQty

THEN 'Y'

ELSE 'N'

END AS PartialFillFlag

FROM

(

SELECT ROW_NUMBER() OVER (PARTITION BY i.ProductID

ORDER BY i.ProductID,

i.LocationID,

i.Shelf,

i.Bin) AS Num,

i.ProductID,

i.LocationID,

i.Shelf,

i.Bin,

i.Quantity

FROM

(

SELECT ProductID,

LocationID,

Shelf,

Bin,

Quantity

FROM Production.ProductInventory

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND Quantity

) i

INNER JOIN Production.ProductInventory p

ON i.ProductID = p.ProductID

AND i.LocationID = p.LocationID

AND i.Shelf = p.Shelf

AND i.Bin = p.Bin

) Inventory_Details

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 469

794XappDfinal.qxd  3/29/07  4:53 PM  Page 469



INNER JOIN

(

SELECT ROW_NUMBER() OVER (PARTITION BY o.ProductID

ORDER BY o.ProductID,

o.SalesOrderID) AS Num,

o.ProductID,

o.SalesOrderID,

o.OrderQty

FROM

(

SELECT ProductID,

SalesOrderID,

SalesOrderDetailID,

OrderQty

FROM Sales.SalesOrderDetail

INNER JOIN dbo.Numbers n

ON n.Num BETWEEN 1 AND OrderQty

) o

INNER JOIN Sales.SalesOrderDetail sod

ON o.SalesOrderID = sod.SalesOrderID

AND o.SalesOrderDetailID = sod.SalesOrderDetailID

AND o.ProductID = sod.ProductID

) Order_Details

ON Inventory_Details.ProductID = Order_Details.ProductID

AND Inventory_Details.Num = Order_Details.Num

GROUP BY Order_Details.SalesOrderID,

Order_Details.ProductID,

Inventory_Details.LocationID,

Inventory_Details.Shelf,

Inventory_Details.Bin,

Inventory_Details.Quantity,

Order_Details.OrderQty;

RETURN;

END;

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS470

794XappDfinal.qxd  3/29/07  4:53 PM  Page 470



Listing 5-6. Comma-Splitter Inline Table-Valued Function

CREATE FUNCTION dbo.fnCommaSplit (@String NVARCHAR(MAX))

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN

(

WITH Splitter(Num, Element)

AS

(

SELECT Num,

SUBSTRING(@String,

CASE Num

WHEN 1 THEN 1

ELSE Num + 1

END,

CASE CHARINDEX(N',', @String, Num + 1)

WHEN 0 THEN LEN(@String) - Num + 1

ELSE CHARINDEX(N',', @String, Num + 1) - Num -

CASE

WHEN Num > 1 THEN 1

ELSE 0

END

END

) AS Element

FROM dbo.Numbers

WHERE Num <= LEN(@String)

AND (SUBSTRING(@String, Num, 1) = N','

OR Num = 1)

)

SELECT ROW_NUMBER() OVER (ORDER BY Num) AS Num,

Element

FROM Splitter

);

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 471

794XappDfinal.qxd  3/29/07  4:53 PM  Page 471



Chapter 6
Listing 6-4. Towers of Hanoi Puzzle

-- This stored procedure displays all the discs in the appropriate

-- towers.

CREATE PROCEDURE dbo.ShowTowers

AS

BEGIN

-- Each disc is displayed as a series of asterisks (*), centered, with

-- the appropriate width. Using FULL OUTER JOIN allows us to show all

-- three towers side by side in a single query.

SELECT REPLICATE(' ', COALESCE(5 - a.Disc, 0)) +

REPLICATE('**', COALESCE(a.Disc, 0)) AS Tower_A,

REPLICATE(' ', COALESCE(5 - b.Disc, 0)) +

REPLICATE('**', COALESCE(b.Disc, 0)) AS Tower_B,

REPLICATE(' ', COALESCE(5 - c.Disc, 0)) +

REPLICATE('**', COALESCE(c.Disc, 0)) AS Tower_C

FROM #TowerA a

FULL OUTER JOIN #TowerB b

ON a.Disc = b.Disc

FULL OUTER JOIN #TowerC c

ON a.Disc = b.Disc;

END;

GO

-- This SP moves a single disc from the specified source tower to the

-- specified destination tower.

CREATE PROCEDURE dbo.MoveOneDisc (@Source NCHAR(1),

@Dest NCHAR(1))

AS

BEGIN

-- @Top is the smallest disc on the source tower

DECLARE @Top INT;

-- We use IF ... ELSE to get the smallest disc from the source tower

IF @Source = N'A'

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS472

794XappDfinal.qxd  3/29/07  4:53 PM  Page 472



BEGIN

-- This gets the smallest disc from Tower A

SELECT @Top = MIN(Disc)

FROM #TowerA;

-- Then we delete it

DELETE FROM #TowerA

WHERE Disc = @Top;

END ELSE IF @Source = N'B'

BEGIN

-- This gets the smallest disc from Tower B

SELECT @Top = MIN(Disc)

FROM #TowerB;

-- Then we delete it

DELETE FROM #TowerB

WHERE Disc = @Top;

END ELSE IF @Source = N'C'

BEGIN

-- This gets the smallest disc from Tower C

SELECT @Top = MIN(Disc)

FROM #TowerC;

-- Then we delete it

DELETE FROM #TowerC

WHERE Disc = @Top;

END

-- Print out the disc move performed

PRINT N'Move Disc #' + CAST(COALESCE(@Top, 0) AS NCHAR(1)) + N' from Tower ' +

@Source + N' to Tower ' + @Dest;

-- Perform the move: INSERT the disc from the source tower to the

-- destination tower

IF @Dest = N'A'

INSERT INTO #TowerA (Disc) VALUES (@Top);

ELSE IF @Dest = N'B'

INSERT INTO #TowerB (Disc) VALUES (@Top);

ELSE IF @Dest = N'C'

INSERT INTO #TowerC (Disc) VALUES (@Top);

-- Show the towers

EXECUTE dbo.ShowTowers;

END;

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 473

794XappDfinal.qxd  3/29/07  4:53 PM  Page 473



-- This SP moves multiple discs recursively

CREATE PROCEDURE dbo.MoveDiscs (@DiscNum INT,

@MoveNum INT OUTPUT,

@Source NCHAR(1) = N'A',

@Dest NCHAR(1) = N'C',

@Aux NCHAR(1) = N'B'

)

AS

BEGIN

-- If the number of discs to move is 0, we're done

IF @DiscNum = 0

PRINT N'Done';

ELSE

BEGIN

-- If the number of discs to move is 1, go ahead and move it

IF @DiscNum = 1

BEGIN

-- Increase the move counter

SELECT @MoveNum = @MoveNum + 1;

-- And move one disc from source to destination

EXEC dbo.MoveOneDisc @Source, @Dest

END

ELSE

BEGIN

DECLARE @n INT

SELECT @n = @DiscNum - 1

-- Move (@DiscNum - 1) discs from Source to Auxiliary tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Source, @Aux, @Dest;

-- Move 1 Disc from Source to Destination tower

EXEC dbo.MoveDiscs 1, @MoveNum OUTPUT, @Source, @Dest, @Aux;

-- Move (@DiscNum - 1) discs from Auxiliary to Destination tower

EXEC dbo.MoveDiscs @n, @MoveNum OUTPUT, @Aux, @Dest, @Source;

END;

END;

END;

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS474

794XappDfinal.qxd  3/29/07  4:53 PM  Page 474



-- This SP creates the three towers and populates Tower A with 5 discs

CREATE PROCEDURE dbo.SolveTowers

AS

BEGIN

-- SET NOCOUNT ON to eliminate system messages that will clutter up

-- the Message display

SET NOCOUNT ON

-- Create the three towers: Tower A = Source, Tower B = Auxiliary,

-- Tower C = Destination

CREATE TABLE #TowerA (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerB (Disc INT PRIMARY KEY NOT NULL);

CREATE TABLE #TowerC (Disc INT PRIMARY KEY NOT NULL);

-- Populate Tower A with 5 discs

INSERT INTO #TowerA (Disc) VALUES (1);

INSERT INTO #TowerA (Disc) VALUES (2);

INSERT INTO #TowerA (Disc) VALUES (3);

INSERT INTO #TowerA (Disc) VALUES (4);

INSERT INTO #TowerA (Disc) VALUES (5);

-- Initialize the move number to 0

DECLARE @MoveNum INT;

SELECT @MoveNum = 0;

-- Show the initial state of the towers

EXECUTE dbo.ShowTowers;

-- Solve the puzzle. Notice we don't need to specify the parameters with

-- defaults

EXECUTE dbo.MoveDiscs 5, @MoveNum OUTPUT;

-- How many moves did it take?

PRINT N'Solved in ' + CAST (@MoveNum AS NVARCHAR(10)) + N' moves.';

-- Drop the temp tables

DROP TABLE #TowerC;

DROP TABLE #TowerB;

DROP TABLE #TowerA;

-- SET NOCOUNT OFF before we exit

SET NOCOUNT OFF

END;

GO

-- Solve the puzzle

EXECUTE dbo.SolveTowers;

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 475

794XappDfinal.qxd  3/29/07  4:53 PM  Page 475



Chapter 8
Listing 8-5. EncryptByCert and DecryptByCert Sample

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'Test_P@ssw0rd';

CREATE CERTIFICATE TestCertificate

WITH SUBJECT = 'AdventureWorks Test Certificate',

EXPIRY_DATE = '10/31/2036';

CREATE SYMMETRIC KEY TestSymmetricKey

WITH ALGORITHM = TRIPLE_DES

ENCRYPTION BY CERTIFICATE TestCertificate;

OPEN SYMMETRIC KEY TestSymmetricKey

DECRYPTION BY CERTIFICATE TestCertificate;

CREATE TABLE #Temp (ContactID INT PRIMARY KEY,

FirstName   NVARCHAR(200),

MiddleName  NVARCHAR(200),

LastName    NVARCHAR(200),

eFirstName  VARBINARY(200),

eMiddleName VARBINARY(200),

eLastName VARBINARY(200));

INSERT

INTO #Temp (ContactID, eFirstName, eMiddleName, eLastName)

SELECT ContactID,

EncryptByKey(Key_GUID('TestSymmetricKey'), FirstName),

EncryptByKey(Key_GUID('TestSymmetricKey'), MiddleName),

EncryptByKey(Key_GUID('TestSymmetricKey'), LastName)

FROM Person.Contact

WHERE ContactID <= 100;

UPDATE #Temp

SET FirstName = DecryptByKey(eFirstName),

MiddleName = DecryptByKey(eMiddleName),

LastName = DecryptByKey(eLastName);

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS476

794XappDfinal.qxd  3/29/07  4:53 PM  Page 476



SELECT ContactID,

FirstName,

MiddleName,

LastName,

eFirstName,

eMiddleName,

eLastName

FROM #Temp;

DROP TABLE #Temp;

CLOSE SYMMETRIC KEY TestSymmetricKey;

DROP SYMMETRIC KEY TestSymmetricKey;

DROP CERTIFICATE TestCertificate;

DROP MASTER KEY;

Chapter 12
Listing 12-8. FOR XML PATH Clause Example

SELECT NameStyle AS 'processing-instruction(nameStyle)',

ContactID AS 'Person/@ID',

ModifiedDate AS 'comment()',

Phone AS 'text()',

FirstName AS 'Person/Name/First',

MiddleName AS 'Person/Name/Middle',

LastName AS 'Person/Name/Last',

EmailAddress AS 'Person/Email'

FROM Person.Contact

FOR XML PATH;

Listing 12-20. Dynamic XML Construction

DECLARE @x XML;

SELECT @x = N'<?xml version = "1.0"?>

<Geocode>

<Info ID = "1">

<Location Type = "Business">

<Name>APress, Inc.</Name>

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 477

794XappDfinal.qxd  3/29/07  4:53 PM  Page 477



<Address>

<Street>2560 Ninth St, Ste 219</Street>

<City>Berkeley</City>

<State>CA</State>

<Zip>94710-2500</Zip>

<Country>US</Country>

</Address>

</Location>

</Info>

</Geocode>';

SELECT @x.query(N'element Companies

{

element FirstCompany

{

attribute CompanyID

{

(//Info/@ID)[1]

},

(//Info/Location/Name)[1]

}

}');

Listing 12-28. sql:column and sql:variable Function Example

/* 10% discount */

DECLARE @discount NUMERIC(3, 2);

SELECT @discount = 0.10;

DECLARE @x xml;

SELECT @x = '';

SELECT @x.query('<Product>

<Model-ID> { sql:column("ProductModelID") }</Model-ID>

<Name> { sql:column("Name") }</Name>

<Price> { sql:column("ListPrice") } </Price>

<DiscountPrice>

{ sql:column("ListPrice") -

(sql:column("ListPrice") * sql:variable("@discount") ) }

</DiscountPrice>

</Product>

')

FROM Production.Product p

WHERE ProductModelID = 30;

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS478

794XappDfinal.qxd  3/29/07  4:53 PM  Page 478



Listing 12-34. XQuery FLWOR Expression Example

SELECT CatalogDescription.query(N'declare namespace ns =

"http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/➥

ProductModelDescription";

for $spec in //ns:ProductDescription/ns:Specifications/*

order by $spec/. descending

return <detail> { $spec/text() } </detail>') AS Detail

FROM Production.ProductModel

WHERE ProductModelID = 19;

Chapter 16
Listing 16-1. HTTP Endpoint Example GetSalespersonList Method

USE AdventureWorks;

GO

CREATE PROCEDURE Sales.GetSalespersonList

AS

BEGIN

SELECT s.SalesPersonID,

s.LastName + ', ' + s.FirstName + ' ' + COALESCE(s.MiddleName, '')

AS FullName

FROM Sales.vSalesPerson s

ORDER BY s.LastName, s.FirstName, s.MiddleName;

END;

GO

Listing 16-2. HTTP Endpoint Example GetSalespersonSales Method

USE AdventureWorks;

GO

CREATE PROCEDURE Sales.GetSalespersonSales (@SalespersonID INT)

AS

BEGIN

SELECT soh.SalesOrderID,

soh.CustomerID,

soh.OrderDate,

soh.SubTotal

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 479

794XappDfinal.qxd  3/29/07  4:53 PM  Page 479



FROM Sales.SalesOrderHeader soh

WHERE soh.SalesPersonID = @SalespersonID

ORDER BY soh.SalesOrderID;

END;

GO

Listing 16-3. HTTP Endpoint Example GetSalesTotal Method

USE AdventureWorks;

GO

CREATE FUNCTION Sales.GetSalesTotal(@SalespersonID INT)

RETURNS MONEY

AS

BEGIN

RETURN (

SELECT SUM(soh.SubTotal)

FROM Sales.SalesOrderHeader soh

WHERE SalesPersonID = @SalespersonID

);

END;

GO

Listing 16-4. HTTP Endpoint Example CREATE ENDPOINT

USE AdventureWorks;

GO

CREATE ENDPOINT AdvSalesEndpoint

STATE = STARTED

AS HTTP

(

PATH = N'/AdvSalesSql',

AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),

SITE = N'*'

)

FOR SOAP

(

WEBMETHOD N'GetSalespersonList'

(

NAME = N'AdventureWorks.Sales.GetSalespersonList',

FORMAT = ROWSETS_ONLY

),

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS480

794XappDfinal.qxd  3/29/07  4:53 PM  Page 480



WEBMETHOD N'GetSalesPersonSales'

(

NAME = N'AdventureWorks.Sales.GetSalesPersonSales',

FORMAT = ROWSETS_ONLY

),

WEBMETHOD 'GetSalesTotal'

(

NAME = N'AdventureWorks.Sales.GetSalesTotal'

),

WSDL = DEFAULT,

DATABASE = N'AdventureWorks',

SCHEMA = STANDARD

);

GO

Listing 16-6. HTTP Endpoint Ad Hoc Querying

CREATE ENDPOINT AdvAdHocEndpoint

STATE = STARTED

AS HTTP (

PATH = N'/AdvAdhocSql',

AUTHENTICATION = (INTEGRATED),

PORTS = (CLEAR),

SITE = N'*'

)

FOR SOAP (

WSDL = DEFAULT,

DATABASE = N'AdventureWorks',

SCHEMA = STANDARD,

BATCHES = ENABLED

);

GO

APPENDIX D ■ SELECTED T-SQL SOURCE CODE L ISTINGS 481

794XappDfinal.qxd  3/29/07  4:53 PM  Page 481



794XappDfinal.qxd  3/29/07  4:53 PM  Page 482



.NET Source Code Listings

This appendix contains complete program listings of the .NET sample programs in

Chapters 14, 15, and 16 in C #. Most of the samples throughout this book were written

in VB.

Chapter 14
Listing 14-1. Fahrenheit to Celsius Converter SQLCLR UDF in C#

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

namespace APress.Samples {

public partial class Sql

{

[SqlFunction(DataAccess=DataAccessKind.None,

IsDeterministic=true)]

public static SqlDouble Fahrenheit2Celsius(SqlDouble f)

{

SqlDouble c = new SqlDouble();

c = (5.0 / 9.0) * (f - 32.0);

return c;

}

};

}

483

A P P E N D I X  E

794XappEfinal.qxd  3/29/07  4:52 PM  Page 483



Listing 14-2. GetYahooNews SQLCLR Table-Valued Function in C#

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Xml;

using System.Runtime.InteropServices;

using System.Collections;

namespace APress.Samples {

public partial class Sql

{

[SqlFunction(IsDeterministic=false,

DataAccess=DataAccessKind.None,

TableDefinition="title nvarchar(256), link nvarchar(256), " +

"pubdate datetime, description nvarchar(max)",

FillRowMethodName="GetRow")]

public static IEnumerable GetYahooNews()

{

XmlTextReader xmlsource = new

XmlTextReader("http://rss.news.yahoo.com/rss/topstories");

XmlDocument newsxml = new XmlDocument();

newsxml.Load(xmlsource);

xmlsource.Close();

return newsxml.SelectNodes("//rss/channel/item");

}

private static void GetRow(Object o, out SqlString title, 

out SqlString link,

out SqlDateTime pubdate, out SqlString description)

{

XmlElement element;

element = (XmlElement)o;

title = element.SelectSingleNode("./title").InnerText;

link = element.SelectSingleNode("./link").InnerText;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS484

794XappEfinal.qxd  3/29/07  4:52 PM  Page 484



pubdate = DateTime.Parse(

element.SelectSingleNode("./pubDate").InnerText);

description = element.SelectSingleNode("./description").InnerText;

}

};

}

Listing 14-3. Get Environment Variables SQLCLR Stored Procedure in C#

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Collections;

namespace APress.Samples

{

public partial class Sql

{

[Microsoft.SqlServer.Server.SqlProcedure]

public static void GetEnvironmentVars()

{

try

{

SortedList environmentList = new SortedList();

foreach (DictionaryEntry de in

Environment.GetEnvironmentVariables())

{

environmentList[de.Key] = de.Value;

}

SqlDataRecord record = new SqlDataRecord(new SqlMetaData("VarName",

SqlDbType.NVarChar, 1024),

new SqlMetaData("VarValue", SqlDbType.NVarChar, 4000));

SqlContext.Pipe.SendResultsStart(record);

foreach (DictionaryEntry de in environmentList)

{

record.SetValue(0, de.Key);

record.SetValue(1, de.Value);

SqlContext.Pipe.SendResultsRow(record);

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 485

794XappEfinal.qxd  3/29/07  4:52 PM  Page 485



SqlContext.Pipe.SendResultsEnd();

}

catch (Exception ex)

{

SqlContext.Pipe.Send(ex.Message);

}

}

};

}

Listing 14-4. Range SQLCLR UDA in C#

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

namespace APress.Samples

{

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]

public struct Range

{

private SqlDouble min;

private SqlDouble max;

public void Init()

{

this.min = SqlDouble.Null;

this.max = SqlDouble.Null;

}

public void Accumulate(SqlDouble Value)

{

if (!Value.IsNull)

{

if (this.min.IsNull || Value < this.min)

this.min = Value;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS486

794XappEfinal.qxd  3/29/07  4:52 PM  Page 486



if (this.max.IsNull || Value > this.max)

this.max = Value;

}

}

public void Merge(Range tempRange)

{

if (this.min.IsNull || tempRange.min < this.min)

this.min = tempRange.min;

if (this.min.IsNull || tempRange.max > this.max)

this.max = tempRange.max;

}

public SqlDouble Terminate()

{

SqlDouble result = new SqlDouble();

result = SqlDouble.Null;

if (!this.min.IsNull && !this.max.IsNull)

result = this.max - this.min;

return result;

}

};

}

Listing 14-5 in Chapter 14 is a scaled-down version of the Complex type listed here.

The listing in Chapter 14 demonstrates complex number parsing, conversion to string,

and the addition and division operators only. The following listing demonstrates the fully

featured Complex UDT with built-in constants, all the basic math operators, and several

additional complex number logarithmic, trigonometric, and hyperbolic functions.

Listing 14-5. Complex Number SQLCLR UDT in C#

// The Complex UDT allows you to represent and manipulate complex numbers

// in T-SQL via the SQLCLR.  Complex numbers are represented with the format:

// a + bi

// Where a is the "real" part of the complex number, b is the "imaginary part", and

// the literal letter "i" is used to represent the imaginary number (square root 

// of -1). If b is negative, the format is:

// a - bi

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 487

794XappEfinal.qxd  3/29/07  4:52 PM  Page 487



// The UDT exposes a few useful constants including:

//    Pi:     The complex number representation of the Pi (3.14159265358979+0i)

//    i:       The complex number representation of the constant i (0+1i)

// One: The complex number representation of the constant 1 (1+0i)

// Two: The complex number representation of the constant 2 (2+0i)

// The exposed methods of the UDT include:

//    CAdd(n1, n2):  Adds the complex numbers n1 and n2

// Sub(n1, n2): Subtracts the complex number n2 from n1

// Mult(n1, n2): Multiplies the complex numbers n1 and n2

// Div(n1, n2): Divides the complex number n1 by n2

// Neg(n1): Returns the negative of the complex number n1

// Conj(n1): Returns the conjugate of the complex number n1

//    Abs(n1):            Returns the absolute value of the complex number n1

//    Exp(n1):            Returns the exponential function of a complex number n1

//    Power(n1, n2):  Returns the result of the complex number n1 to the n2 power

//    Sqrt(n1):           Returns the square root of the complex number n1

//    Ln(n1):              Returns the natural logarithm of the complex number n1

//    Log(n1):            Returns the base-10 logarithm of the complex number n1

//    Sin(n1):             Sine of a complex number

// Sinh(n1): Hyperbolic sine of a complex number

// Cos(n1): Cosine of a complex number

// Cosh(n1): Hyperbolic cosine of a complex number

// Sec(n1): Secant of a complex number

// Sech(n1): Hyperbolic secant of a complex number

//    Csc(n1):            Cosecant of a complex number

// Csch(n1): Hyperbolic cosecant of a complex number

//    Tan(n1):            Tangent of a complex number

// Tanh(n1): Hyperbolic tangent of a complex number

//    Cot(n1):             Cotangent of a complex number

// Coth(n1): Hyperbolic cotangent of a complex number

using System;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.Text.RegularExpressions;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS488

794XappEfinal.qxd  3/29/07  4:52 PM  Page 488



namespace APress.Sample

{

[Serializable]

[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native,

IsByteOrdered = true)]

public struct Complex : INullable

{

#region "Complex Number UDT Fields/Components"

public Double real;

public Double imaginary;

private bool m_Null;

#endregion

#region "Complex Number Parsing, Constructor, and Methods/Properties"

private static readonly Regex rx = new Regex(

"^(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))[i|I]$|" +

"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))$|" +

"^(?<Real>[+-]?([0-9]+|[0-9]*\\.[0-9]+))" + 

"(?<Imaginary>[+-]?([0-9]+|[0-9]*\\.[0-9]+))[i|I]$");

public static Complex Parse(SqlString s)

{

Complex u = new Complex();

if (s.IsNull)

u = Null;

else

{

MatchCollection m = rx.Matches(s.Value);

if (m.Count == 0)

throw (new FormatException("Invalid Complex Number Format."));

String real_str = m[0].Groups["Real"].Value;

String imaginary_str = m[0].Groups["Imaginary"].Value;

if (real_str == "" && imaginary_str == "")

throw (new FormatException("Invalid Complex Number Format."));

if (real_str == "")

u.real = 0.0;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 489

794XappEfinal.qxd  3/29/07  4:52 PM  Page 489



else

u.real = Convert.ToDouble(real_str);

if (imaginary_str == "")

u.imaginary = 0.0;

else

u.imaginary = Convert.ToDouble(imaginary_str);

}

return u;

}

public override String ToString()

{

String sign = "";

if (this.imaginary >= 0.0)

sign = "+";

return this.real.ToString() + sign + this.imaginary.ToString() + "i";

}

public bool IsNull

{

get

{

return m_Null;

}

}

public static Complex Null

{

get

{

Complex h = new Complex();

h.m_Null = true;

return h;

}

}

public Complex(Double r, Double i)

{

this.real = r;

this.imaginary = i;

this.m_Null = false;

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS490

794XappEfinal.qxd  3/29/07  4:52 PM  Page 490



#endregion

#region "Useful Complex Number Constants"

// The property "i" is the Complex number 0 + 1i. Defined here because

// it is useful in some calculations

public static Complex i

{

get

{

return new Complex(0, 1);

}

}

// The property "Pi" is the Complex representation of the number

// Pi (3.141592... + 0i)

public static Complex Pi

{

get

{

return new Complex(Math.PI, 0);

}

}

// The property "One" is the Complex number representation of the

// number 1 (1 + 0i)

public static Complex One

{

get

{

return new Complex(1, 0);

}

}

// The property "Two" is the Complex number representation of the

// number 2 (2 + 0i)

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 491

794XappEfinal.qxd  3/29/07  4:52 PM  Page 491



public static Complex Two

{

get

{

return new Complex(2, 0);

}

}

#endregion

#region "Complex Number Basic Operators"

// Complex number addition

public static Complex operator +(Complex n1, Complex n2)

{

Complex u;

if (n1.IsNull || n2.IsNull)

u = Null;

else

u = new Complex(n1.real + n2.real, n1.imaginary + n2.imaginary);

return u;

}

// Complex number subtraction

public static Complex operator -(Complex n1, Complex n2)

{

Complex u;

if (n1.IsNull || n2.IsNull)

u = Null;

else

u = new Complex(n1.real - n2.real, n1.imaginary - n2.imaginary);

return u;

}

// Complex number multiplication

APPENDIX E ■ .NET SOURCE CODE L ISTINGS492

794XappEfinal.qxd  3/29/07  4:52 PM  Page 492



public static Complex operator *(Complex n1, Complex n2)

{

Complex u;

if (n1.IsNull || n2.IsNull)

u = Null;

else

u = new Complex((n1.real * n2.real) - (n1.imaginary * n2.imaginary),

(n1.real * n2.imaginary) + (n2.real * n1.imaginary));

return u;

}

// Complex number division

public static Complex operator /(Complex n1, Complex n2)

{

Complex u;

if (n1.IsNull || n2.IsNull)

u = Null;

else

{

if (n2.real == 0.0 && n2.imaginary == 0.0)

throw new DivideByZeroException(

"Complex Number Division By Zero Exception.");

u = new Complex(((n1.real * n2.real) + 

(n1.imaginary * n2.imaginary)) /

((Math.Pow(n2.real, 2) + Math.Pow(n2.imaginary, 2))),

((n1.imaginary * n2.real) - (n1.real * n2.imaginary)) /

((Math.Pow(n2.real, 2) + Math.Pow(n2.imaginary, 2))));

}

return u;

}

// Unary minus operator

public static Complex operator -(Complex n1)

{

Complex u;

if (n1.IsNull)

u = Null;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 493

794XappEfinal.qxd  3/29/07  4:52 PM  Page 493



else

u = new Complex(-n1.real, -n1.imaginary);

return u;

}

// Exponentation operator

public static Complex operator ^(Complex n1, Complex n2)

{

Complex u;

if (n1.IsNull || n2.IsNull)

u = Null;

else

u = Exp(n2 * Ln(n1));

return u;

}

#endregion

#region "Exposed Mathematical Basic Operator Methods"

// Add complex number n2 to n1

public static Complex CAdd(Complex n1, Complex n2)

{

return n1 + n2;

}

// Subtract complex number n2 from n1

public static Complex Sub(Complex n1, Complex n2)

{

return n1 - n2;

}

// Multiply complex number n1 * n2

public static Complex Mult(Complex n1, Complex n2)

{

return n1 * n2;

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS494

794XappEfinal.qxd  3/29/07  4:52 PM  Page 494



// Divide complex number n1 by n2

public static Complex Div(Complex n1, Complex n2)

{

return n1 / n2;

}

// Returns negated complex number

public static Complex Neg(Complex n1)

{

return -n1;

}

// Returns conjugate of complex number

public static Complex Conj(Complex n1)

{

Complex u;

if (n1.IsNull)

u = Null;

else

u = new Complex(n1.real, -n1.imaginary);

return u;

}

// Returns absolute value of a complex number

public static Complex Abs(Complex n1)

{

Complex u;

if (n1.IsNull)

u = Null;

else

u = new Complex(Math.Sqrt(Math.Pow(n1.real, 2) +

Math.Pow(n1.imaginary, 2)), 0.0);

return u;

}

#endregion

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 495

794XappEfinal.qxd  3/29/07  4:52 PM  Page 495



#region "Complex Number Exponentiation, Roots, Powers"

// The exponential function of a complex number

public static Complex Exp(Complex n1)

{

Complex u;

if (n1.IsNull)

u = Null;

else

u = new Complex((Math.Exp(n1.real) * Math.Cos(n1.imaginary)),

(Math.Exp(n1.real) * Math.Sin(n1.imaginary)));

return u;

}

// Returns the square root of a complex number

public static Complex Sqrt(Complex n1)

{

return n1 ^ new Complex(0.5, 0);

}

// Raises a complex number n1 to the power n2

public static Complex Power(Complex n1, Complex n2)

{

return n1 ^ n2;

}

// Complex number natural logarithm

public static Complex Ln(Complex n1)

{

Complex u;

if (n1.IsNull)

u = Null;

else

u = new Complex((Math.Log(Math.Pow((Math.Pow(n1.real, 2) +

Math.Pow(n1.imaginary, 2)), (0.5)))), 

Math.Atan2(n1.imaginary, n1.real));

return u;

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS496

794XappEfinal.qxd  3/29/07  4:52 PM  Page 496



// Complex number base-10 logarithm

public static Complex Log(Complex n1)

{

return Ln(n1) / Ln(new Complex(10, 0));

}

#endregion

#region "Complex Number Trigonometric and Hyperbolic Functions"

// Sine of a complex number

public static Complex Sin(Complex n1)

{

return (Exp(n1 * i) - Exp(-n1 * i)) / (Two * i);

}

// Hyperbolic Sine of a complex number

public static Complex Sinh(Complex n1)

{

return (Exp(n1) - Exp(-n1)) / Two;

}

// Cosine of a complex number

public static Complex Cos(Complex n1)

{

return (Exp(n1 * i) + Exp(-n1 * i)) / Two;

}

// Hyperbolic cosine of a complex number

public static Complex Cosh(Complex n1)

{

return (Exp(n1) + Exp(-n1)) / Two;

}

// Tangent of a complex number

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 497

794XappEfinal.qxd  3/29/07  4:52 PM  Page 497



public static Complex Tan(Complex n1)

{

return Sin(n1) / Cos(n1);

}

// Hyperbolic tangent of a complex number

public static Complex Tanh(Complex n1)

{

return Sinh(n1) / Cosh(n1);

}

// Cotangent of a complex number

public static Complex Cot(Complex n1)

{

return Cos(n1) / Sin(n1);

}

// Hyperbolic cotangent of a complex number

public static Complex Coth(Complex n1)

{

return Cosh(n1) / Sinh(n1);

}

// Secant of a complex number

public static Complex Sec(Complex n1)

{

return One / Cos(n1);

}

// Hyperbolic secant of a complex number

public static Complex Sech(Complex n1)

{

return One / Cosh(n1);

}

// Cosecant of a complex number

APPENDIX E ■ .NET SOURCE CODE L ISTINGS498

794XappEfinal.qxd  3/29/07  4:52 PM  Page 498



public static Complex Csc(Complex n1)

{

return One / Sin(n1);

}

// Hyperbolic cosecant of a complex number

public static Complex Csch(Complex n1)

{

return One / Sinh(n1);

}

#endregion

}

}

Chapter 15
Listing 15-1. .NET DataReader SQL Client in C#

using System;

using System.Text;

using System.Data.SqlClient;

using System.Collections.Generic;

namespace Apress.Samples

{

class DataReaderExample

{

static void Main(string[] args)

{

String sqlConStr = "DATA SOURCE=(local);" +

"INITIAL CATALOG=AdventureWorks;" +

"INTEGRATED SECURITY=SSPI;";

String sqlStmt = "SELECT DepartmentId, " +

" Name, " +

" GroupName, " +

" ModifiedDate " +

" FROM HumanResources.Department " +

" ORDER BY DepartmentId";

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 499

794XappEfinal.qxd  3/29/07  4:52 PM  Page 499



SqlConnection sqlCon = null;

SqlCommand sqlCmd = null;

SqlDataReader sqlDr = null;

try

{

sqlCon = new SqlConnection(sqlConStr);

sqlCon.Open();

sqlCmd = new SqlCommand(sqlStmt, sqlCon);

sqlDr = sqlCmd.ExecuteReader();

while (sqlDr.Read())

{

Console.WriteLine("{0}\t{1}\t{2}\t{3}",

sqlDr["DepartmentId"].ToString(),

sqlDr["Name"].ToString(),

sqlDr["GroupName"].ToString(),

sqlDr["ModifiedDate"].ToString());

}

}

catch (SqlException ex)

{

Console.WriteLine(ex.Message);

}

finally

{

if (sqlDr != null)

sqlDr.Close();

if (sqlCmd != null)

sqlCmd.Dispose();

if (sqlCon != null)

sqlCon.Dispose();

}

Console.Write("Press a Key to Continue...");

Console.ReadKey();

}

}

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS500

794XappEfinal.qxd  3/29/07  4:52 PM  Page 500



Listing 15-3. .NET Parameterized SQL Query in C#

using System;

using System.Data;

using System.Data.SqlClient;

using System.Collections.Generic;

namespace Apress.Samples

{

class ParameterizedQuery

{

static void Main(string[] args)

{

String name = "SMITH";

String sqlstmt = "SELECT ContactID, FirstName, MiddleName, LastName " +

" FROM Person.Contact " +

" WHERE LastName = @name";

SqlConnection sqlcon = null;

SqlCommand sqlcmd = null;

SqlDataReader sqldr = null;

try

{

sqlcon = new SqlConnection("SERVER=(local); " +

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;");

sqlcon.Open();

sqlcmd = new SqlCommand(sqlstmt, sqlcon);

sqlcmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = name;

sqldr = sqlcmd.ExecuteReader();

while (sqldr.Read())

{

Console.WriteLine("{0}\t{1}\t{2}\t{3}",

sqldr["ContactID"].ToString(),

sqldr["LastName"].ToString(),

sqldr["FirstName"].ToString(),

sqldr["MiddleName"].ToString());

}

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 501

794XappEfinal.qxd  3/29/07  4:52 PM  Page 501



finally

{

if (sqldr != null)

sqldr.Close();

if (sqlcmd != null)

sqlcmd.Dispose();

if (sqlcon != null)

sqlcon.Dispose();

}

Console.WriteLine("Press any key...");

Console.ReadKey();

}

}

}

Listing 5-4. .NET ExecuteXmlReader Example in C#

using System;

using System.Data;

using System.Xml;

using System.Data.SqlClient;

namespace Apress.Samples

{

class XmlReaderQuery

{

static void Main(string[] args)

{

String name = "SMITH";

String sqlstmt = "SELECT ContactID, FirstName, " +

" COALESCE(MiddleName, '') AS MiddleName, LastName " +

" FROM Person.Contact " +

" WHERE LastName = @name FOR XML AUTO";

SqlConnection sqlcon = null;

SqlCommand sqlcmd = null;

XmlReader sqlxr = null;

try

APPENDIX E ■ .NET SOURCE CODE L ISTINGS502

794XappEfinal.qxd  3/29/07  4:53 PM  Page 502



{

sqlcon = new SqlConnection("SERVER=(local); " +

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;");

sqlcon.Open();

sqlcmd = new SqlCommand(sqlstmt, sqlcon);

sqlcmd.Parameters.Add("@name", SqlDbType.NVarChar, 50).Value = name;

sqlxr = sqlcmd.ExecuteXmlReader();

while (sqlxr.Read())

{

Console.WriteLine("{0}\t{1}\t{2}\t{3}",

sqlxr["ContactID"].ToString(),

sqlxr["LastName"].ToString(),

sqlxr["FirstName"].ToString(),

sqlxr["MiddleName"].ToString());

}

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

finally

{

if (sqlxr != null)

sqlxr.Close();

if (sqlcmd != null)

sqlcmd.Dispose();

if (sqlcon != null)

sqlcon.Dispose();

}

Console.WriteLine("Press any key...");

Console.ReadKey();

}

}

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 503

794XappEfinal.qxd  3/29/07  4:53 PM  Page 503



Listing 15-5. .NET SqlBulkCopy Example in C#

using System;

using System.Data;

using System.Xml;

using System.IO;

using System.Data.SqlClient;

using System.Diagnostics;

namespace Apress.Samples

{

class ZipImport

{

private static void Main(string[] args)

{

Stopwatch sw = new Stopwatch();

sw.Start();

int rowcount = DoImport();

sw.Stop();

Console.WriteLine("{0} Rows Imported in {1} Seconds.",

rowcount, (sw.ElapsedMilliseconds / 1000.0));

Console.WriteLine("Press a Key...");

Console.ReadKey();

}

private static int DoImport()

{

String sqlcon = "DATA SOURCE=(local); " +

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;";

String srcfile = "C:\\ZIPCodes.txt";

DataTable dt = null;

using (SqlBulkCopy bulkCopier = new SqlBulkCopy(sqlcon))

{

bulkCopier.DestinationTableName = "ZIPCodes";

try

{

dt = LoadSourceFile(srcfile);

bulkCopier.WriteToServer(dt);

}

catch (SqlException ex)

APPENDIX E ■ .NET SOURCE CODE L ISTINGS504

794XappEfinal.qxd  3/29/07  4:53 PM  Page 504



{

Console.WriteLine(ex.Message);

}

}

return dt.Rows.Count;

}

private static DataTable LoadSourceFile(String srcfile)

{

DataTable loadtable = new DataTable();

DataColumn loadcolumn = new DataColumn();

DataRow loadrow;

loadcolumn.DataType = Type.GetType("System.String");

loadcolumn.ColumnName = "ZIP";

loadcolumn.Unique = true;

loadtable.Columns.Add(loadcolumn);

loadcolumn = new DataColumn();

loadcolumn.DataType = System.Type.GetType("System.Double");

loadcolumn.ColumnName = "Latitude";

loadcolumn.Unique = false;

loadtable.Columns.Add(loadcolumn);

loadcolumn = new DataColumn();

loadcolumn.DataType = System.Type.GetType("System.Double");

loadcolumn.ColumnName = "Longitude";

loadcolumn.Unique = false;

loadtable.Columns.Add(loadcolumn);

loadcolumn = new DataColumn();

loadcolumn.DataType = System.Type.GetType("System.String");

loadcolumn.ColumnName = "City";

loadcolumn.Unique = false;

loadtable.Columns.Add(loadcolumn);

loadcolumn = new DataColumn();

loadcolumn.DataType = System.Type.GetType("System.String");

loadcolumn.ColumnName = "State";

loadcolumn.Unique = false;

loadtable.Columns.Add(loadcolumn);

using (StreamReader sr = new StreamReader(srcfile))

{

String record = sr.ReadLine();

while (record != null)

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 505

794XappEfinal.qxd  3/29/07  4:53 PM  Page 505



{

String [] s = record.Split('\t');

loadrow = loadtable.NewRow();

loadrow["ZIP"] = s[0];

loadrow["Latitude"] = s[1];

loadrow["Longitude"] = s[2];

loadrow["City"] = s[3];

loadrow["State"] = s[4];

loadtable.Rows.Add(loadrow);

record = sr.ReadLine();

}

}

return loadtable;

}

}

}

Listing 15-7. MARS Client Example in C#

using System;

using System.Data;

using System.Data.SqlClient;

namespace Apress.Samples

{

class SqlResultTests

{

private static void Main(string[] args)

{

// Create and open a native SqlClient connection to SQL Server 2005

SqlConnection sqlcon = new SqlConnection("SERVER=(local);" +

"INITIAL CATALOG=AdventureWorks;INTEGRATED SECURITY=SSPI;" +

"MULTIPLEACTIVERESULTSETS=TRUE;");

sqlcon.Open();

// Create two SqlCommands to retrieve two result sets

SqlCommand sqlcmd1 = new SqlCommand("SELECT DepartmentID, Name, " +

"GroupName FROM HumanResources.Department", sqlcon);

SqlCommand sqlcmd2 = new SqlCommand("SELECT ShiftID, Name, " +

"StartTime, EndTime FROM HumanResources.Shift", sqlcon);

APPENDIX E ■ .NET SOURCE CODE L ISTINGS506

794XappEfinal.qxd  3/29/07  4:53 PM  Page 506



// Open the first result set

SqlDataReader sqldr1 = sqlcmd1.ExecuteReader();

// Open the second result set

SqlDataReader sqldr2 = sqlcmd2.ExecuteReader();

// Output the results of the first result set

Console.WriteLine("===========");

Console.WriteLine("Departments");

Console.WriteLine("===========");

while (sqldr1.Read())

{

Console.WriteLine(String.Format("{0}\t{1}\t{2}",

sqldr1["DepartmentID"], sqldr1["Name"],

sqldr1["GroupName"]));

}

// Output the results of the second result set

Console.WriteLine("======");

Console.WriteLine("Shifts");

Console.WriteLine("======");

while (sqldr2.Read())

{

Console.WriteLine(String.Format("{0}\t{1}\t{2}\t{3}",

sqldr2["ShiftID"], sqldr2["Name"], sqldr2["StartTime"],

sqldr2["EndTime"]));

}

// Clean up

sqldr1.Close();

sqldr2.Close();

sqlcmd1.Dispose();

sqlcmd2.Dispose();

sqlcon.Dispose();

// Exit the program

Console.WriteLine("Press a key to end.");

Console.ReadKey();

}

}

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 507

794XappEfinal.qxd  3/29/07  4:53 PM  Page 507



Chapter 16
Listing 16-5. HTTP Endpoint Consumer in C#

using System;

using System.Net;

using System.Windows.Forms;

using System.Data.SqlClient;

namespace APress.Samples

{

public partial class Form1 : Form

{

public Form1()

{

InitializeComponent();

}

private void Form1_Load(object sender, EventArgs e)

{

// Create a web service proxy using the SQL Server HTTP endpoint

localhost.AdvSalesEndpoint proxy = new localhost.AdvSalesEndpoint();

// Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials;

// Bind the combo box to the results of the web method call

this.cboSalesPerson.ValueMember = "SalespersonId";

this.cboSalesPerson.DisplayMember = "FullName";

// Call the web method

this.cboSalesPerson.DataSource = proxy.GetSalespersonList().Tables[0];

}

private void cboSalesPerson_SelectedIndexChanged(object sender, EventArgs e)

{

// Create a web service proxy using the SQL Server HTTP endpoint

localhost.AdvSalesEndpoint proxy = new localhost.AdvSalesEndpoint();

// Set the integrated security credentials

proxy.Credentials = CredentialCache.DefaultCredentials;

APPENDIX E ■ .NET SOURCE CODE L ISTINGS508

794XappEfinal.qxd  3/29/07  4:53 PM  Page 508



// Bind the data grid view to the results of the web method call

this.dgvSales.DataSource = proxy.GetSalesPersonSales(new

System.Data.SqlTypes.SqlInt32(

(int)this.cboSalesPerson.SelectedValue)).Tables[0];

// Populate the text box with the results of the second web method call

this.txtTotalSales.Text = proxy.GetSalesTotal(new

System.Data.SqlTypes.SqlInt32(

(int)this.cboSalesPerson.SelectedValue)).Value.ToString("C");

}

private void btnExit_Click(object sender, EventArgs e)

{

// Exit the application

Application.Exit();

}

}

}

APPENDIX E ■ .NET SOURCE CODE L ISTINGS 509

794XappEfinal.qxd  3/29/07  4:53 PM  Page 509



794XappEfinal.qxd  3/29/07  4:53 PM  Page 510



■Special Characters
:!! command, 22
# (number sign), 6, 141, 192
## (double number sign), 6
#Temp_ProductIDs table, 221
$ (dollar sign) character, 7
$color variable, 319
$feat variable, 319
$spec variable, 317
$x variable, 311
$y variable, 311
% operator, T-SQL, 442
& (AND) operator, 161
& operator, T-SQL, 442
* (asterisk), 12, 415
* (wildcard character), 234
* column, FOR XML PATH, 235
* namespace qualifier, 289
*/ operator, T-SQL, 442
* operator, T-SQL, 442
/* operator, T-SQL, 442
* wildcard character, 278
*= outer join operator, 10
// (double solidus), 291
(: symbol, 301
@ (at sign), 6, 233
@@ (double at sign), 6
[ ] (brackets), 6, 459
[ ] (square brackets), 303

[,o:out_codepage], 17
^ operator, T-SQL, 442
_ (underscore character), 7
| operator, T-SQL, 442
~ operator, T-SQL, 442
+ (plus sign), 415
+ (unary plus) operator, 311
+ operator, T-SQL, 442
< operator, T-SQL, 442
<< operator, 308
<= operator, 305

<= operator, T-SQL, 442
!<= operator, T-SQL, 442
<> operator, T-SQL, 442
!= operator, 305
= operator, 305, 442
!= operator, T-SQL, 442
=* outer join operator, 10
!> operator, T-SQL, 442
> operator, T-SQL, 442
>= operator, 305
>= operator, T-SQL, 442
>> operator, 308
“ (double quotes), 6
? (euro) symbol, 288
; (semicolon) terminator, 6
/ (slash mark), 233
- (unary minus) operator, 311
/ operator, T-SQL, 442
-? option, 16
:) symbol, 301

■A
A characters, 99
-A option, 16
-a packet_size option, 16
ABS function, 113
ABSENT option, ELEMENTS keyword, 229
absolute location path, 458
Accumulate method, 359, 363, 365
ACM (Association for Computing

Machinery), 1
ACTIVE FOR BEGIN_DIALOG statement,

181–182
actual execution plan, 27
Add Connection window, 209
ADD ENCRYPTION BY MACHINE KEY

statement, 178
add_authenticator option, 194, 196
<Address> node, 258
ADO.NET, 379–381
AdventureWorks database, 31, 223

Index

511

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 511



adventureworks-inventory.html file, 271
AdventureWorks.Sales.GetSalespersonList

stored procedure, 422
AdvSalesEndpoint stored procedure, 421
AFTER (FOR) trigger, 144
AFTER INSERT trigger, 159
AFTER trigger, 155, 163
AFTER UPDATE keyword, 146
ALGORITHM option, 192
ALL SERVER scope, 165–166, 169
ALL_RESULTS value, 417
ALLOW_PAGE_LOCKS option, 264
ALLOW_ROW_LOCKS option, 264
alphabetic characters, 6
ALTER ANY DATABASE DDL TRIGGER

permission, 169
ALTER ASYMMETRIC KEY statement, 188
ALTER CERTIFICATE statement, 183
ALTER DATABASE database_name SET

RECURSIVE_TRIGGERS OFF
statement, 156

ALTER ENDPOINT statement, 418, 436
ALTER MASTER KEY statement, 178, 180
ALTER permission, 164
ALTER PROCEDURE statement, 122
ALTER SERVICE MASTER KEY statement, 177
ALTER statement, 192
ALTER SYMMETRIC KEY statement, 192
ALTER TABLE statement, 163, 394
ALTER TRIGGER statement, 145, 162
ALTER WEBMETHOD statement, 437
American National Standards Institute

(ANSI), 1–2
anchor query, 38
AND (&) operator, 161
ANSI (American National Standards

Institute), 1–2
ANSI X9.17 Financial Institution Key

Management standard, 175
ANSI_PADDING option, 22
API (application programming interface),

124
APPLY operators, 44
APress.Samples namespace, 269, 354, 357,

362, 383, 391, 400
argument parameters, 208
AS HTTP clause, 413, 421

AS keyword, 88, 90, 122, 169
Ashton-Tate, 1
assemblies, SQLCLR programming, 345–349
ASSEMBLY keyword, 187
Assembly_bits namespace, 349
assembly_name namespace, 349
Association for Computing Machinery

(ACM), 1
asterisk (*), 12, 415
Asym_key_id asymmetric key ID, 188
AsymKey_ID function, 188
asymmetric encryption functions, 185–186
asymmetric keys, 187–191
at sign (@), 6, 233
atomic values, 287
AttachDBFileName connection string key,

SqlConnection, 384
attribute:: axis specifier, 296
attribute dynamic constructor, 299
attribute nodes, 459
attributes, 278

XPath, 277
AUTH_REALM option, 416
AUTHENTICATION option, 414
authenticator parameter, 194
AUTHORIZATION keyword, 187
AUTO keyword, 229
automatic key management, 178

■B
-b option, 16
BACKUP MASTER KEY statement, 179
BACKUP SERVICE MASTER KEY statement,

177
BACKUP statement, 179, 182
bang notation, 91
BASIC authentication, AUTHENTICATION

option, 414
BatchCommands string, 431
BATCHES argument, 417
bcp (bulk-copy program) utility, 323, 397
BEGIN CATCH.END CATCH block, 205
BEGIN keyword, 122, 145
BEGIN TRY.END TRY block, 205
BEGIN.END keywords, 65–66, 90, 169
BETWEEN operator, 54

■INDEX512

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 512



BINARY BASE64 option, FOR XML RAW
mode, 228

binary data type, 246
binary variables, 246
Books Online (BOL), 27
Boolean expressions, 66, 68, 76
brackets ([ ]), 6, 459
BREAK statement, 68–69
BREAK statement, WHILE loop, 10
btnExit.Click event, 429
btnQuery.Click event handler, 433
Bulk Copy Program (bcp), 323, 397
Bulk Load APIs, 333

■C
-c batch_term option, 16
C# code snippet, 2
C++ language, 2
caching, 122
CAdd (complex number add), 374
CALLED ON NULL INPUT function, 89, 101
CALLER keyword, 89
CASE expressions, 92, 111

overview, 74
searched CASE expression

CASE and pivot tables, 78–83
COALESCE and NULLIF, 83–84
overview, 76–78

simple CASE expression, 75–76
CASE statements, 48, 64, 95
cast as keywords, 316
CAST function, 246
cast operator, 311
catalog views, 323–333, 335
CATCH block, 73, 205, 385
Catch portion, Try...Catch block, 358
cdata directive, 233
Cert_ID function, 185
certificate_name option, ALTER

CERTIFICATE statement, 183
Certificate_name statement, 181
certificates, 180–187
Char data, 245
CHARACTER_SET argument, 418
CHECK_CONSTRAINTS view,

INFORMATION_SCHEMA, 336

child:: axis specifier, 296
ciphertext, 184, 188
CLEAR port type, PORTS option, 415
CLEAR_PORT option, 415, 422
clear_port value, 415
cleartext strings, 184
client_assembly_specifier namespace, 349
client-side parameterization, 222–223, 225
CLOSE ALL SYMMETRIC KEYS statement,

193
CLOSE MASTER KEY statement, 180
CLOSE SYMMETRIC KEY statement, 193
COALESCE function, 83–84, 92, 396
code modularization, 123
code units, 117
COLUMN_DOMAIN_USAGE view,

INFORMATION_SCHEMA, 336
COLUMN_PRIVILEGES view,

INFORMATION_SCHEMA, 336
columns, without names, 278
COLUMNS view, INFORMATION_SCHEMA,

336
COLUMNS_UPDATED function, 156–162
ComboBox SelectedIndexChanged event,

428
command-line options, SQLCMD utility,

15–20
commands, SQLCMD utility, 22–24
comment( ) column, FOR XML PATH, 235
comment( ) node, 284, 292–293
comments, defined, 457
Common Table Expressions (CTEs), Data

Manipulation Language (DML),
36–39

<Companies> tags, 299
CompanyID dynamic attribute constructor,

301
compatibility views, 338–339
Complex class, 376
complex number add (CAdd), 374
complex numbers, 366
Complex type, 487
COMPRESSION option, 416
:CONNECT server, 23
Connection Timeout connection string key,

SqlConnection, 384

■INDEX 513

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 513



CONSTRAINT_COLUMN_USAGE view,
INFORMATION_SCHEMA, 336

CONSTRAINT_TABLE_USAGE view,
INFORMATION_SCHEMA, 336

ContactType name, 8
ContactTypeID number, 8
content expression, 299
CONTENT keyword, 247
context item expression, defined, 457
Context item expressions, 288
context node, defined, 457
context-item expression, 296
context-sensitive help, 27
CONTINUE statement, 10, 68–69
CONTROL SERVER permissions, 169, 177
control-of-flow statements

BEGIN.END keywords, 65–66
GOTO statement, 70
IF...ELSE statement, 66–68
overview, 64–65
RETURN statement, 72
TRY...CATCH statement, 72–74
WAITFOR statement, 70–72
WHILE, BREAK, and CONTINUE

statements, 68–69
Coordinates nodes, 291, 297
COUNT( ) function, 2, 49
CREATE ASSEMBLY statement, 271, 345, 349,

351
CREATE ASYMMETRIC KEY statement, 187
CREATE CERTIFICATE statement, 180–182
CREATE ENDPOINT statement, 420, 423, 436

CREATE ENDPOINT arguments, 413
HTTP protocol arguments, 413–416
overview, 412–413
Simple Object Access Protocol (SOAP)

arguments, 416–418
CREATE FUNCTION statement, 87, 105, 165,

351
CREATE INDEX statement, 394
CREATE MASTER KEY statement, 178
CREATE PRIMARY XML INDEX statement,

263–264
CREATE PROCEDURE statement, 117, 122,

165
CREATE statement, 247, 346
CREATE SYMMETRIC KEY statement, 191

CREATE TABLE event, 170
CREATE TABLE statement, 95, 172
CREATE TRIGGER statement, 143, 145, 162,

165
CREATE XML INDEX statement, 264
CREATE XML SCHEMA COLLECTION

statement, 246
CROSS APPLY operator, 44–45, 255
CROSS JOIN operator, 318
C-style Extended Stored Procedure API, 343
CTE_name, 36
CTE_query_definition, 36
CTEs (Common Table Expressions)DML (,

Data Manipulation Language), 36–39
Customer_Count unpivot operation, 52

■D
-d db_name option, 16
data( ) column, FOR XML PATH, 235
data( ) function, 280–282
Data Keys, 175
Data Manipulation Language (DML)

Common Table Expressions (CTEs), 36–39
CROSS APPLY and OUTER APPLY, 44–45
INTERSECT and EXCEPT, 40–41
NEWSEQUENTIALID function, 58
OUTPUT clause, 39
OVER clause, 59–61
overview, 36
PIVOT and UNPIVOT operators, 48–52
ranking functions

NTILE function, 57
overview, 53
RANK and DENSE_RANK functions,

55–56
ROW_NUMBER function, 53–55

synonyms, 58–59
TABLESAMPLE clause, 46–47
TOP keyword, 41–43

Data Manipulation Language (DML)
statements, 42

Data Source connection string key,
SqlConnection, 384

data_type_schema statement, 88
DataAccess attribute, 351, 354
DATABASE argument, 417, 422
database master key (DMK), 176, 178–180

■INDEX514

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 514



DATABASE scope, 165–167, 169
DataSet class, 348
datatype column, Edge Table format, 238
Datetime variables, 70
dbo.fnFactorial function, 91
dbo.fnNYSIIS function, 100
debugging. See error handling and debugging
declaration, 117
declarative languages, 2–4
Declarative Referential Integrity (DRI), 143,

145
declarative syntax, 3
declare default element namespace keyword,

295
declare namespace keyword, 294
DECLARE statement, 66
DecryptByAsymKey function, 188
DecryptByCert function, 184
DecryptByKey function, 193, 196, 199
DecryptByKeyAutoAsymKey function, 199
DecryptByKeyAutoCert function, 200
DecryptByPassPhrase function, 200
DECRYPTION BY clause, 193
DECRYPTION BY PASSWORD statement,

179, 188
DEFAULT keyword, 92, 118
DEFAULT option, OPENXML Flags

parameter, 238
DEFAULT value, 416
DEFAULT_LOGON_DOMAIN option, 416
defensive programming, 385
DELAY keyword, 70
DELETE event, 152–153
DELETE statement, 150
DELETE triggers, 164
deleted virtual table, 39, 144, 151, 153
DENSE_RANK function, 55–56
DER (Distinguished Encoding Rules), 182
descendant:: axis specifier, 296
descendant-or-self:: axis specifier, 296
deterministic function, 113
DIGEST authentication, AUTHENTICATION

option, 414
direct recursion, 155
direction property, proxyclass.SqlParameter

object, 432
DISABLE TRIGGER statement, 163

DISABLED state, 413
disabling DML triggers, 162–165
Distinguished Encoding Rules (DER), 182
div operator, 311
DLL (dynamic link library), 345
DMK (database master key), 176, 178–180
DML. See Data Manipulation Language

(DML)
DML (Data Manipulation Language)

statements, 42
DML triggers

altering, dropping, and disabling, 162–165
events that fire, 165–172
and identity columns, 162
nested, 155–156
overview, 143–145
UPDATE and COLUMNS_UPDATED

functions, 156–162
when to use, 145–154

Do While loop, 385, 392
DOCUMENT keyword, 247
document nodes, 459
Document Object Model (DOM), 458
DoImport( ) function, 401–402
dollar sign ($) character, 7
DOM (Document Object Model), 458
DOMAIN_CONSTRAINTS view,

INFORMATION_SCHEMA, 336
DOMAINS view, INFORMATION_SCHEMA,

336
double at sign (@@), 6
double number sign (##), 6
double quotes (“), 6
double solidus (//), 291
Double type values, 373
DPAPI (Windows Data Protection API), 176
DRI (Declarative Referential Integrity), 143,

145
DROP ASYMMETRIC KEY option, 188
DROP ENCRYPTION BY MACHINE KEY

statement, 178
DROP ENDPOINT statement, 436
DROP MASTER KEY statement, 179
DROP PROCEDURE statement, 118, 122, 141
DROP statement, 247
DROP SYMMETRIC KEY statement, 192–193
DROP SYNONYM syntax, 59

■INDEX 515

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 515



DROP TABLE statement, 172
DROP TRIGGER statement, 172
DROP TRIGGER syntax, 163
DROP WEBMETHOD statement, 437
DROP_EXISTING option, 263
dropping DML triggers, 162–165
dynamic link library (DLL), 345
dynamic pivot table script, 80
dynamic SQL

client-side parameterization, 222–225
EXECUTE statement

overview, 215–216
SQL injection and dynamic SQL,

216–218
troubleshooting dynamic SQL, 220
validation, 218–219

overview, 215
and scope, 221–222
sp_executesql stored procedure, 220

■E
-e option, 16
-E option, 16
:ED command, 23
editing options, SSMS, 27
Edu.Level node, 261
elem/@name column, FOR XML PATH, 235
Element column, VARCHAR(MAX) string, 110
element Companies dynamic element

constructor, 300
element directive, 232
element dynamic constructor, 299
element grouping, 279–280
element nodes, 459
element_name element, 233–234
elementcentric, 275
ELEMENTS keyword, 229–230
elements of style

avoiding SELECT * style of querying, 12
initializing variables, 12
naming conventions, 6–8
one entry, one exit rule, 8–10
overview, 4
SQL-92 syntax outer joins, 10–11
whitespace, 4–6

ELEMENTS XSINIL option, 282

Element!Tag!Attribute!Directive notation, 231
elementxsinil directive, 232
elem/name column, FOR XML PATH, 235
else result expression, 75–76
ELSE statement, 66
Elsewhere value, 75
EMAIL node, 277
empty parentheses ( ), 286
empty sequences, 287, 458
ENABLE TRIGGER statement, 163
Encrypt connection string key,

SqlConnection, 384
EncryptByAsymKey function, 188
EncryptByCert function, 184
EncryptByKey function, 194, 196
EncryptByPassPhrase function, 200
encryption

asymmetric keys, 187–191
certificates, 180–187
Database Master Key (DMK), 178–180
encryption hierarchy, 175–176
hashing and encryption without keys,

200–201
overview, 175
Service Master Key (SMK), 177–178
symmetric keys, 191–200

ENCRYPTION BY clause, 192
ENCRYPTION BY PASSWORD statement,

181, 188
ENCRYPTION clause, 165
encryption key management, 175
ENCRYPTION option, 88, 121, 144
END keyword, 122, 145
end_point_name argument, CREATE

ENDPOINT statement, 413
environment variables SQLCLR stored

procedure, 485
Environment.GetEnvironmentVariables( )

functions, 357
eq operator, 303
:ERROR destination command, 23
error handling and debugging

debugging tools, 209–212
legacy error handling, 203–205
RAISERROR statement, 208–209
TRY…CATCH model of error handling,

205–207

■INDEX516

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 516



error messages, 11
ERROR_LINE( ) function, 74, 206
ERROR_MESSAGE( ) function, 74, 206
ERROR_NUMBER( ) function, 73, 206
ERROR_PROCEDURE( ) function, 74, 206
ERROR_SEVERITY( ) function, 73, 206
ERROR_STATE( ) function, 74, 206
estimated query execution plan, 28
ETL (Extract, Transform, Load), 397
euro (?) symbol, 288
event_groups, 167
event_types, 169
EVENTDATA function, 170
EXCEPT, Data Manipulation Language

(DML), 40–41
EXECUTE AS clause, 121, 165
EXECUTE AS option, 89, 144
EXECUTE statement, 120

overview, 215–216
SQL injection and dynamic SQL, 216–218
troubleshooting dynamic SQL, 220
validation, 218–219

ExecuteNonQuery method, 394
ExecuteReader method, 385, 392
ExecuteScalar method, 394
ExecuteXmlReader method, 392, 394
exist( ) method, 253–255
existential comparisons, 305
exist(XQuery) method, xml data type, 250
:EXIT command, 23
EXPIRY_DATE statement, 181
EXPLICIT keyword, 231
extended stored procedures (XPs), 114, 345
Extensible Markup Language. See XML
Extensible Stylesheet Language

Transformations (XSLT), 265–271,
274, 461

EXTERNAL NAME option, 145, 351
EXTERNAL_ACCESS ASSEMBLY permission,

353
EXTERNAL_ACCESS permission, 349, 353
Extract, Transform, Load (ETL), 397

■F
-f codepage | i:in_codepage option, 17
F&O, defined, 458
facets, defined, 458

factorial, 91
FILE option, 182, 187
fill-row method, 354
FillRowMethodName attribute, 354
filter expression, 287, 458
Finally block, 385
FirstCompany node, 300
flags parameter, OPENXML, 237
FLWOR expression, defined, 458
fn namespace, 295
fn: namespace, 311
fn:avg function, XQuery, 312
fn:ceiling function, XQuery, 312
fn:concat function, XQuery, 312
fn:contains function, XQuery, 312
fn:count function, XQuery, 312
fn:data function, XQuery, 312
fn:distinct-values function, XQuery, 312
fn:empty function, XQuery, 312
fn:expanded-QName function, XQuery, 312
fn:false( ) function, XQuery, 312
fn:floor function, XQuery, 312
fn:id function, XQuery, 312
fn:last( ) function, XQuery, 312
fn:local-name function, XQuery, 312
fn:local-name-from-QName function,

XQuery, 312
fn:max function, XQuery, 312
fn:min function, XQuery, 312
fn:namespace-uri function, XQuery, 313
fn:namespace-uri-from-QName function,

XQuery, 313
fn:not function, XQuery, 313
fn:number function, XQuery, 313
fn:position( ) function, XQuery, 313
fn:round( ) function, XQuery, 313
fn:string( ) function, XQuery, 313
fn:string-length( ) function, XQuery, 313
fn:substring( ) function, XQuery, 313
fn:sum( ) function, XQuery, 313
fn:true( ) function, XQuery, 313
FOR (AFTER) trigger, 144
FOR clause, 264, 320
FOR REPLICATION clause, 121
FOR SOAP clause, 416, 422
FOR XML AUTO clause, 229–231, 236
FOR XML clause, 227, 265

■INDEX 517

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 517



FOR XML enhancements, 227
FOR XML EXPLICIT clause, 231–233
FOR XML groups, 279
FOR XML PATH clause, 233–236, 273
FOR XML PATH query, 236
FOR XML PATH XPath expression, 275
FOR XML RAW clause, 228–230
FORCE keyword, 177, 179
FORCE option, 178
FORMAT argument, 416
Format.Native attribute, 370
Format.Native serialization, 362, 365
Format.UserDefined attribute, 370
Format.UserDefined serialization, 362, 365
FROM ASSEMBLY statement, 181
FROM clause, 82
FULL OUTER JOIN statement, 137
Function calls, 288
function_name statement, 87
function_options statement, 90
functions, user-defined, SQLCLR

programming, 349–355

■G
ge operator, 303
general comparisons, defined, 458
GET CONVERSATION GROUP statement, 

71
GETDATE function, 146
GetEnvironmentVars method, 357
GetEnvironmentVars SQLCLR stored

procedure, 358
GetRow method, 355
GetSalesPersonList web method, 427
GetSalesTotal web method, 429
GetYahooNews SQLCLR table-valued

function, 484
globally unique identifiers (GUIDs), 46
GO batch terminator, 22
GO command, 23
GOTO statement, 64, 70
graphical query execution plans, 28
graphical user interface (GUI), 25
GROUP BY clause, 41
GROUP BY function, 64
grouping elements, 279–280
gt operator, 304

GUI (graphical user interface), 25
GUIDs (globally unique identifiers), 46

■H
-h headers option, SQLCMD command-line,

17
-H workstation option, SQLCMD command-

line, 17
hash collisions, 201
HashBytes function, 200
hashing and encryption without keys,

200–201
HAVING clause, 41
hdoc parameter, OPENXML, 237
HEADER_LIMIT argument, 418
:HELP command, 23
Help Search function, 27
hide directive, 232
hierarchy, encryption, 175–176
homogeneous sequences, 287
HTTP endpoints

altering and dropping, 436–437
CREATE ENDPOINT statement

CREATE ENDPOINT arguments, 413
HTTP protocol arguments, 413–416
overview, 412–413
Simple Object Access Protocol (SOAP)

arguments, 416–418
creating, 418–423
creating web service consumer

executing HTTP endpoint ad hoc
queries, 430–431

overview, 424–430
sqlbatch method, 431–435

overview, 411
WSDL documents, 423–424

HTTP protocol arguments, 413–416
HumanResources.Department table, 383
HumanResources.JobCandidate table, 250,

262
HumanResources.Shift table, 39
HumanResources.vEmployee view, 4

■I
-i option, 17
-I option, 17
IBinarySerialize interface, 362, 365

■INDEX518

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 518



id column, Edge Table format, 238
id directives, 233
ID node, 277
IDENT_CURRENT function, 162
identifiers, 7
identity columns, and DML triggers, 162
IDENTITY_VALUE option, 192, 194
idref directives, 233
idrefs directive, 233
IEnumerable object, 354
IF EXISTS statement, 159
IF statement, 66, 161
IF...ELSE statement, 64, 66–68
If...Then...Else construct, 310
IIS (Internet Information Services), 411
image data type, 34
imperative languages, vs. declarative

languages, 2–4
Imports statements, 353
IN logical operator, 76
indexes, 259–264
indirect recursion, 155
Info node, 301
INFORMATION_SCHEMA views, 

335–337
INFORMATION_SCHEMA.COLUMNS

view, 337
Init method, 359, 363
Initial Catalog connection string key,

SqlConnection, 384
initialization vector (IV), 194
initializing variables, 12
inline table-valued functions (TVFs),

109–113
INNER JOIN clause, 60
INNER JOIN operators, 6
InnerText property, 355
input expression, 75–76
INSERT INTO statement, 221
INSERT statement, 126, 150, 152, 204
insert statement, modify( ) method, 258
INSERT statements, 95
inserted virtual table, 39, 144, 151, 153
instance of Boolean operator, 316
INSTEAD OF DELETE triggers, 163
INSTEAD OF INSERT trigger, 163

INSTEAD OF trigger, 144, 155, 163
INSTEAD OF UPDATE triggers, 163
instruction nodes, 459
int ID number, 208
INT OUTPUT parameter, 237
INT parameter, 91
INT value, 119
INT variable, 120
int variable, 240
integer expression, 72
INTEGRATED authentication,

AUTHENTICATION option, 415
Integrated Security connection string key,

SqlConnection, 384
interactive mode, SQLCMD utility, 24–25
Internet Information Services (IIS), 411
INTERSECT, Data Manipulation Language

(DML), 40–41
INTO clause, 39
INullable interface, 369
IS NOT NULL operator, 64, 256
IS NULL operator, 64, 256
is operator, 308–309
IsByteOrdered attribute, 370
IsDeterministic attribute, 354
IsDeterministic function, 351
IsFixedLength attribute, 370
ISNULL function, 84
IsNull property, 373
IV (initialization vector), 194

■J
j variable, 65
JOIN clause, 108
JOIN operators, 44, 61

■K
-k [1|2] option, 17
KERBEROS authentication,

AUTHENTICATION option, 414
Key Encrypting Keys, 175
KEY_COLUMN_USAGE view,

INFORMATION_SCHEMA, 336
Key_GUID function, 194
KEY_SOURCE option, 192

■INDEX 519

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 519



keys
asymmetric, 187–191
hashing and encryption without, 200–201
symmetric, 191–200

keywords, 439–449
kludgy solutions, 34

■L
-L [c] option, 18
-l timeout option, 18
large object (LOB) data types, 33
le operator, 303
LEFT OUTER JOIN, 2
legacy error handling, 203–205
length facet, 458
LIKE operator, 219
:LIST command, 23
list data types, defined, 457
:LISTVAR command, 23
Literals, 288
Load event, 427
LoadSourceFile( ) function, 401–402
LOB (large object) data types, 33
localname column, Edge Table format, 238
Location column, 95
Location node, 297, 301
location paths, defined, 458
LocationID attribute, Location element, 302
LOG option, WITH keyword, 208
login argument, 413
LOGIN_TYPE argument, 417
lt operator, 303

■M
-m error_level option, SQLCMD command-

line, 18
Main( ) subroutine, 388, 392, 401
markup languages, 274
MARS (multiple active result sets), 404–409
Master Keys, 175
<Material> node, 255
max data types, 33
MaxByteSize attribute, 370
MAXDOP option, 264
maxLength property,

proxyclass.SqlParameter object, 432

MAXRECURSION 2 (OPTION) option, 39
MAXRECURSION option, 38
Merge method, 359, 363
MERGE statement, 125
metadata, SQL

catalog views, 323–335
compatibility views, 338–339
INFORMATION_SCHEMA views, 335–337
overview, 323
system stored procedures, 340

Microsoft.SqlServer.Server namespace, 348
mixed-case table, 8
modify( ) method, 256–259
modify(XML_DML) method, xml data type,

250
Mountain string, 217
MSDN Community Forums, 27
Msg_id parameter, 208
Msg_str parameter, 208
multiple active result sets (MARS), 404–409
MultipleActiveResultSets connection string

key, SqlConnection, 384
MultipleActiveResultSets keyword, 407
multistatement table-valued functions

(TVFs), 100–108
My Documents\SQL Server Management

Studio\Projects directory, 29

■N
NAME argument, 416
name column, FOR XML PATH, 235
Name node, 301
name property, proxyclass.SqlParameter

object, 432
name variable, 390
named groups, 372
NAMESPACE argument, 417
namespace nodes, 459
namespaceuri column, Edge Table format,

238
naming conventions, 6–8
NCHAR variable, 220
ne operator, 303
nested triggers, 155–156
.NET classes, 346

■INDEX520

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 520



.NET client programming
ADO.NET, 379–381
multiple active result sets, 404–409
.NET SqlClient, 381–389
nonquery, scalar, and XML querying,

394–397
overview, 379
parameterized queries, 389–393
SqlBulkCopy, 397–404

.NET DataReader SQL client, 499

.NET ExecuteXmlReader example, 502

.NET Parameterized SQL query, 501

.NET source code listings, 483–509

.NET SqlBulkCopy example, 504
new data types

overview, 33
varchar(max), nvarchar(max), and

varbinary(max), 34–35
XML data type, 33–34

New York State Identification and
Intelligence System algorithm
(NYSIIS), 93

NEWID function, 114
NEWSEQUENTIALID function, 58
NGram column, 95
n-grams, 93
NOCOUNT ON keyword, 151
NOCOUNT ON trigger, 159
node comparisons, defined, 458
node sequences, 460
node sets, 460
node tests, 284–285, 459
NodeA node, 309
NodeB node, 309
nodes, defined, 458–459
nodes( ) method, 255–256
nodes(XQuery) as

table_name(column_name) method,
xml data type, 250

nodetype column, Edge Table format, 238
nondeterministic functions, 113–114
NONE value, 416–417
nonquery querying, 394–397
NOT FOR REPLICATION keyword, 146, 151
NOT FOR REPLICATION trigger, 145, 159
NOWAIT option, WITH keyword, 208

ntext data type, 34
NTILE function, 57
n-tile ranking, 53
NTLM authentication, AUTHENTICATION

option, 414
NULL, 12, 40, 63, 282–283
Null property, 373
NULLIF function, 83–84
NULL-valued elements, 282
Num column, VARCHAR(MAX) string, 110
number sign (#), 6, 141, 192
Numbers table, 96, 218
numeric digits, 7
numeric predicate, 301
nvarchar variable, 81, 186
NVARCHAR variable, 220
nvarchar XPath query pattern, 237
NVARCHAR(50) parameter, 96
nvarchar(max), 34–35, 240
NYSIIS (New York State Identification and

Intelligence System algorithm), 93

■O
-o output_file option, 18
Object class, 348
Object parameter, 355
object_id column, 335
OBJECTPROPERTYEX( ) function, 89
ODBC (Open Database Connectivity) drivers,

142
ODS (Open Data Services) library, 343
:ON ERROR action command, 23
ON keyword, 6, 144
one entry, one exit rule, 8–10
Open Data Services (ODS) library, 343
Open Database Connectivity (ODBC) drivers,

142
OPEN MASTER KEY statement, 178, 180
OPEN statement, 193
OPEN SYMMETRIC KEY statement, 193
OPENXML function, 236–244
OPENXML query, 241
OPENXML rowset, 227
operator, T-SQL, 442
OPTION (MAXRECURSION 2) option, 39
optional axes, 296

■INDEX 521

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 521



optional occurrence indicator, 316, 459
ORDER BY clause, 3, 54, 57, 59, 131, 321
osql command-line utility, 15
osql scripts, 24
<Out( )> attribute, 353, 355
:OUT destination command, 24
OUTER APPLY, Data Manipulation Language

(DML), 44–45
OUTER APPLY operators, 44
OUTPUT clause, 39, 43, 162
OUTPUT clause, Data Manipulation

Language (DML), 39
OUTPUT keyword, 118, 120
output parameters, 120
OVER clause, 59–61, 64
OVER keyword, 54, 57
owner_name namespace, 349

■P
-p [1] option, 18
-P password option, 18
p1 namespace, 294
PAD_INDEX option, 263
parameter_data_type statement, 88
parameterization, 389
parameterized queries, 389–393
parameterized views, 109
parameters, 118
Parameters array, proxyclass.SqlParameter

object, 431
Parameters property,

SqlParameterCollection, 392
PARAMETERS view,

INFORMATION_SCHEMA, 336
parent:: axis specifier, 296–297
Parenthesized expressions, 288
parentid column, Edge Table format, 238
Parse method, 371
partial classes, 350
PARTITION BY clause, 54, 57, 59
Password connection string key,

SqlConnection, 384
PATH argument, 431
path expression, defined, 459
PATH secondary XML index, 260
:PERFTRACE destination command, 24

Persist Security Info connection string key,
SqlConnection, 384

Person.Contact table, 41, 43, 435
Person.ContactType table, 8
PI( ) function, 88
PIVOT operator, 48–52, 78
pivot tables, 78–83
Plaintext text, 188
plus sign (+), 415
PORTS option, 415
precision property, proxyclass.SqlParameter

object, 432
predicate expressions, 303
predicate truth value, 302
predicates, defined, 459
prefix column, Edge Table format, 238
prev column, Edge Table format, 238
primary expressions, 288, 459
Primary XML index, 259
PRINT statement, 66, 115, 204, 209
private key, 187
procedure_name, 117
processing-instruction, 284
processing-instruction( ) node test, 292
processing-instruction(name) column, FOR

XML PATH, 235
processing-instruction(“name”) node tests,

292
ProductID default, 128
ProductID number, 108, 131
Production.ProductModel table, 255
project management features, SSMS, 29–30
PROPERTY secondary XML index, 260
proxyclass.SqlParameter object, 431
public key, 187
Public Shared function, 351

■Q
-q “query” option, 18
-Q “query” option, 18
queries, parameterized, 389–393
query( ) method, 250–252, 256, 285
Query Analyzer, 27
query execution plans, 122
query optimization, 122
query(XQuery) method, xml data type, 250

■INDEX522

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 522



:QUIT command, 24
QUOTED_IDENTIFIERS option, 22
QUOTENAME function, 83

■R
-r [0|1] option, 18
:R filename command, 24
-R option, 18
RAISERROR statement, 73, 207–209
RAISERROR statements, 115
RAND function, 114
RANK function, 55–56
ranking functions, DML

NTILE function, 57
overview, 53
RANK and DENSE_RANK functions, 55–56
ROW_NUMBER function, 53–55

RAW mode, 229
RDBMS (relational database management

system), 2, 124
Read method, 365
RECEIVE statement, 71
recompilation threshold, 123
RECOMPILE option, 121
recursion, in stored procedures (SPs),

132–141
recursive query, 38
REFERENTIAL_CONSTRAINTS view,

INFORMATION_SCHEMA, 336
REGENERATE keyword, 177
REGENERATE option, 179
relational database management system

(RDBMS), 2, 124
relative location path, 458
REMOVE PRIVATE KEY option, ALTER

CERTIFICATE statement, 183
repeat_seed random seed generation

number, 46
REPEATABLE operators, 46
REPLACE function, 98, 217
replace value of statement, 258
Replacement column, 95
reserved keywords, 449
:RESET command, 24
RESTORE CERTIFICATE statement, 183
RESTORE MASTER KEY statement, 179

RESTORE statements, 179
result expression, 75–76
RETURN @@error value, 203
RETURN statement, 72, 90, 111, 119
return value, 120
RETURNS clause, 105
RETURNS keyword, 88, 90, 101
RETURNS NULL ON NULL INPUT function,

89, 96, 101
ROLLBACK TRANSACTION trigger, 158
root node, 459
ROOT option, FOR XML RAW mode, 228
ROUTINE_COLUMNS view,

INFORMATION_SCHEMA, 336
ROUTINES view, INFORMATION_SCHEMA,

336
ROW_NUMBER function, 53–55, 57, 360
rowpattern parameter, OPENXML, 237
rowset provider, 236
ROWSETS_ONLY value, 417

■S
-s column_separator option, 19
-S server option, 18
SAFE permission, 349
Sales.GetSalespersonList stored procedure,

418
Sales.GetSalesTotal stored procedure, 419
Sales.SalesOrderDetail table, 101
sample_number parameter, 46
scalar querying, 394–397
scalar user-defined functions (UDFs)

overview, 87–90
procedural code in, 93–100
recursion in, 91–93

scale property, proxyclass.SqlParameter
object, 432

SCHEMA argument, 416, 418, 422
schema_id column, 335
schema_name, 117, 144
Schema_name schema, 246
schema_name statement, 87
SCHEMABINDING function, 88, 90
SCHEMATA view, INFORMATION_SCHEMA,

336

■INDEX 523

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 523



scope, and dynamic SQL, 221–222
SCOPE_IDENTITY function, 162
scripting variables, SQLCMD utility, 20–22
searched CASE expression

CASE and pivot tables, 78–83
COALESCE and NULLIF, 83–84
overview, 76–78

Secondary XML index, 259
SELECT * style of querying, avoiding, 12
SELECT clause, 12
SELECT keyword, 6
SELECT portion, 52
SELECT query, 38, 106, 108–109, 111, 231,

253, 383
SELECT statement, 34, 39, 45, 47–48, 96, 147,

153, 199, 215, 227, 230, 265, 276–277,
317, 392, 396, 404

SELECT TOP keyword, 42
select_stmt statement, 109
SelectedIndexChanged event, 428
SelectNodes method, 354
SelectSingleNode method, 355
self:: axis specifier, 296
semicolon (;) terminator, 6
SendResultsEnd method, 358
SendResultsRow method, 358
SendResultsStart method, 358
SEQUEL, 1
sequences, defined, 459–460
Serializable attribute, 362, 370
:SERVERLIST command, 24
service master key (SMK), 176–178
SESSION_TIMEOUT argument, 417
SESSIONS argument, 417
SET clause, UPDATE statement, 256
SET NOCOUNT ON statement, 146
SET ROWCOUNT statement, 41
SETERROR option, WITH keyword, 208
SetValue method, 358
:setvar command, 22
:SETVAR var command, 24
Severity parameter, 208
SHA algorithm, 200
SHA1 algorithm, 200
Shared methods, 374
shredding, 259, 460

SignByAsymKey function, 190
SignByCert function, 186
simple CASE expression, 75–76
Simple Object Access Protocol (SOAP), 411,

416–418, 460
SITE argument, 415
slash mark (/), 233
SMK (service master key), 176–178
.smssproj extension, 29
SOAP (Simple Object Access Protocol), 411,

416–418, 460
SORT_IN_TEMPDB option, 263
SOUNDEX function, 93
source code listings, 463–481
sp_ prefix, 118
sp_column_privileges system stored

procedure, 340
sp_columns system stored procedure, 340
sp_configure system stored procedure, 155
sp_databases system stored procedure, 340
sp_dbcmptlevel stored procedure, 11
sp_executesql stored procedure, 220
sp_fkeys system stored procedure, 340
sp_help system, 123
sp_OACreate method, 343
sp_OACreate stored procedure, 343
sp_pkeys system stored procedure, 340
sp_recompile system stored procedure, 123
sp_server_info system stored procedure, 340
sp_settriggerorder system stored procedure,

164
sp_special_columns system stored

procedure, 340
sp_sproc_columns system stored procedure,

340
sp_statistics system stored procedure, 340
sp_stored_procedures system stored

procedure, 340
sp_table_privileges system stored procedure,

340
sp_tables system stored procedure, 340
sp_xml_preparedocument system stored

procedure, 227, 236, 240
sp_xml_removedocument procedure, 237
sp_xml_removedocument system stored

procedure, 227, 236, 241

■INDEX524

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 524



Specifications child node text, 318
<Specifications> node, 294
Splitter, 111
SPs. See stored procedures (SPs)
SPs (recursion, in stored procedures),

132–141
SQL (Structured Query Language), 1

injection, 83
metadata

catalog views, 323–333, 335
compatibility views, 338–339
INFORMATION_SCHEMA views,

335–337
overview, 323
system stored procedures, 340

SQL (Structured Query Language) BOL (
Server 2005 Books Online), 31

SQL (Structured Query Language) SSMS (
Server Management Studio)

context-sensitive help, 27
editing options, 27
graphical query execution plans, 28
overview, 25–27
project management features, 29–30

SQL (Structured Query Language)-92 syntax
outer joins, 10–11

sql: namespace, 313
Sql partial class, 354
SQL Server 2000 programmers, T-SQL for

Data Manipulation Language (DML)
Common Table Expressions (CTEs),

36–39
CROSS APPLY and OUTER APPLY,

44–45
INTERSECT and EXCEPT, 40–41
NEWSEQUENTIALID function, 58
OUTPUT clause, 39
OVER clause, 59–61
overview, 36
PIVOT and UNPIVOT operators, 48–52
ranking functions, 53–57
synonyms, 58–59
TABLESAMPLE clause, 46–47
TOP keyword, 41–43

new data types
overview, 33

varchar(max), nvarchar(max), and
varbinary(max), 34–35

XML data type, 33–34
overview, 33

SQL Server Integration Services (SSIS), 397
SQL Server Management Studio (SSMS), 26
SQL statement, 66, 68
sql_statement variable, 220
sql_statements, 169, 205
sqlbatch method, 431–435
sqlbatch method, SqlParameter objects, 434
sqlbatch web method, 432
SqlBulkCopy class, 397–404
SqlClient, .NET, 381–389
SqlClient namespace, 383
SqlClient objects, 393
SQLCLR functions, 114
SQLCLR .NET Framework, 344
SQLCLR programming

assemblies, 345–349
overview, 343–345
stored procedures, 356–358
user-defined aggregates (UDAs), 359–365
user-defined functions, 349–355
user-defined types, 365–376

SQLCLR stored procedure code, 268
SQLCLR UDA, 486
SQLCMD command-line options, 20
SQLCMD utility

command-line options, 15–20
commands, 22–24
interactive mode, 24–25
overview, 15
scripting variables, 20–22

SQLCMDCOLSEP scripting variable, 21
SQLCMDCOLWIDTH scripting variable, 21
SQLCMDDBNAME scripting variable, 21
SQLCMDERRORLEVEL scripting variable, 21
SQLCMDHEADERS scripting variable, 21
SQLCMDINI scripting variable, 21–22
SQLCMDLOGINTIMEOUT scripting

variable, 21
SQLCMDMAXFIXEDTYPEWIDTH scripting

variable, 21
SQLCMDMAXVARTYPEWIDTH scripting

variable, 21

■INDEX 525

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 525



SQLCMDPACKETSIZE scripting variable, 21
SQLCMDSERVER scripting variable, 21
SQLCMDSTATTIMEOUT scripting variable,

21
SQLCMDUSER “” scripting variable, 20
SQLCMDWORKSTATION scripting variable,

21
sql:column function, 313–314
SqlCommand class, 381, 383, 394
SqlCommand Parameters collection, 223
SqlCommandBuilder class, SqlClient, 381
SqlConnection class, SqlClient, 381
SqlConnection object, 383
SqlConnectionStringBuilder class, SqlClient,

381
sqlConStr variable, 382
SqlContext class, 348
SqlDataAdapter class, SqlClient, 381
SqlDataReader class, SqlClient, 381, 383, 385
sqlDbType property, proxyclass.SqlParameter

object, 432
SqlDouble Celsius temperature, 351
SqlDouble Fahrenheit temperature, 351
SqlException class, SqlClient, 381
SqlFunction attribute, 349, 351, 354
SqlParameter class, SqlClient, 381
SqlParameter objects, 434
SqlParameterCollection class, SqlClient, 381
SqlPipe class, 348
SqlProcedure( ) attribute, 357
SqlTransaction class, SqlClient, 381
sqltypes namespace, 295
SqlUserDefinedAggregate attribute, 362
SqlUserDefinedType attribute, 370
sql:variable function, 314
square brackets ([ ]), 303
SSIS (SQL Server Integration Services), 397
SSL port type, PORTS option, 415
SSL_PORT option, 415
SSMS (SQL Server Management Studio), 26
.ssmssln extension, 28
STANDARD argument, 422
STANDARD value, 416
START_DATE statement, 181
STARTED state, 413
STATE argument, 413
State parameter, 208

statement block, 66, 68
StateProvinceCode unpivot operation, 52
STATISTICS_NORECOMPUTE option, 263
step, defined, 460
step operators, 277
STOPPED state, 413
stored procedures (SPs), 8, 27, 345

ALTER PROCEDURE and DROP
PROCEDURE statements, 122

example, 124–131
overview, 117–122
reasons for using, 122–124
recursion in, 132–141
SQLCLR programming, 356–358
system stored procedures, 340
temporary, 141–142

<Street> node, 258
string delimiters, 217
string functions, 34
Structured Query Language. See SQL
style, elements of. See elements of style
Sub Main( ) routine, 406
SUBSTRING function, 162
SUM( ) function, 2
Sybase, 1
symmetric encryption functions, 185–186
symmetric keys, 191–200
syn_schema syntax definition, 59
synonyms, DML, 58–59
sys.allocation_units object catalog views, 325
sys.assemblies catalog view, 324
sys.assembly_files catalog view, 324
sys.assembly_modules object catalog views,

325
sys.assembly_references catalog view, 324
sys.assembly_type scalar types catalog views,

331
sys.backup_devices catalog view, 324
sys.check_constraints object catalog views,

325
sys.column_xml_schema_collection_usage

XML schemas catalog views, 331
syscolumns compatibility view, 339
sys.columns object catalog views, 325, 333
sys.computed_columns object catalog views,

326
sys.database_files catalog view, 324

■INDEX526

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 526



sys.database_mirroring catalog view, 324
sys.database_recovery_status catalog view,

325
sys.databases catalog view, 324
sys.default_constraints object catalog views,

326
sys.event_notifications object catalog views,

326
sys.events object catalog views, 326
sys.extended_procedures object catalog

views, 327
sys.foreign_key_columns object catalog

views, 327
sys.foreign_keys object catalog views, 327
sys.fulltext_index_columns object catalog

views, 327
sys.fulltext_indexes object catalog views, 327
sys.identity_columns object catalog views,

327
sys.index_columns object catalog views, 328
sys.indexes object catalog views, 328
sys.key_constraints object catalog views, 328
sys.master_files catalog view, 325
sys.numbered_procedure_parameters object

catalog views, 328
sys.numbered_procedures object catalog

views, 328
sys.objects object catalog views, 328
sys.parameter_xml_schema_collection_

usages XML schemas catalog views,
331

sys.parameters object catalog views, 329
sys.partitions object catalog views, 329
sys.procedures object catalog views, 329
sys.schemas catalog view, 335
sys.service_queues object catalog views, 329
sys.sql_dependencies object catalog views,

329
sys.sql_modules object catalog views, 329
sys.stats object catalog views, 330
sys.stats_columns object catalog views, 330
sys.synonyms object catalog views, 330
sys.tables object catalog views, 330, 334
SYSTEM keyword, 46
System namespace, 348
System R, 1
system stored procedures, 340

System.Data namespaces, 222, 348, 379
SYSTEMDATAACCESS property, 89
System.Data.Common namespace, 379
System.Data.Odbc namespace, 381
System.Data.OleDb namespace, 380
System.Data.Sql namespace, 379
System.Data.SqlClient namespace, 4, 222,

348, 380, 391
System.Data.SqlTypes namespace, 348, 379
System.IO namespace, 400
System.Xml namespace, 353
sys.trigger_events object catalog views, 330
sys.triggers object catalog views, 330
sys.types scalar type catalog views, 331
sys.views object catalog views, 331
sys.xml_indexes XML schemas catalog views,

331
sys.xml_schema_attributes XML schemas

catalog views, 331
sys.xml_schema_collections XML schemas

catalog views, 331
sys.xml_schema_component_placements

XML schemas catalog views, 331
sys.xml_schema_components XML schemas

catalog views, 331
sys.xml_schema_elements XML schemas

catalog views, 332
sys.xml_schema_facets XML schemas

catalog views, 332
sys.xml_schema_model_groups XML

schemas catalog views, 332
sys.xml_schema_namespaces XML schemas

catalog views, 332
sys.xml_schema_types XML schemas catalog

views, 332
sys.xml_schema_wildcard_namespaces XML

schemas catalog views, 332
sys.xml_schema_wildcards XML schemas

catalog views, 332

■T
-t timeout option, 19
TABLE_CONSTRAINTS view,

INFORMATION_SCHEMA, 336
TABLE_PRIVILEGES view,

INFORMATION_SCHEMA, 337
TableDefinition attribute, 354

■INDEX 527

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 527



TABLES view, INFORMATION_SCHEMA, 337
TABLESAMPLE clause, 46–47
TABLESAMPLE operators, 46
table-valued functions (TVFs), 44

inline, 109–113
multistatement, 100–108

temporary stored procedures, 141–142
temporary table, 119
Terminate function, 364
Terminate method, 359, 365
test-expression syntax, 310
text( ) column, FOR XML PATH, 235
text column, Edge Table format, 238
text data, 245
text data type, 34
text nodes, 459
three-valued logic (3VL), 63–64
throw functions, 208
TIME keyword, 70
timeout command, 71
TIMEOUT keyword, 72
tinyint value, 237
tools

AdventureWorks sample database, 31
overview, 15
SQL Server 2005 Books Online (BOL), 31
SQL Server Management Studio (SSMS)

context-sensitive help, 27
editing options, 27
graphical query execution plans, 28
overview, 25–27
project management features, 29–30

SQLCMD utility
command-line options, 15–20
commands, 22–24
interactive mode, 24–25
overview, 15
scripting variables, 20–22

TOP clause, 46
TOP keyword, 41–43
ToString method, 372
Transact-SQL (T-SQL), 1
trigger_name, 144
triggers, DML, 173
TRIPLE_DES algorithm, 198, 200
troubleshooting dynamic SQL, 220
TRUNCATE TABLE statement, 164

TRY block, 73, 205
TRY…CATCH model of error handling,

205–207
Try...Catch blocks, 357, 385
Try...Catch exception, 222
TRY...CATCH method, 207
TRY...CATCH statement, 72–74
T-SQL (Transact-SQL), 1
T-SQL statements, 27
T-SQL variable, 88
tuple stream, 317
TVFs. See table-valued functions (TVFs)
TYPE option, FOR XML RAW mode, 228
type promotion, 315

■U
-U login_id option, 19
-u option, 19
UDAs (user-defined aggregates), SQLCLR

programming, 359–365
UDFs. See user-defined functions (UDFs)
unary minus (-) operator, 311
unary plus (+) operator, 311
underscore character (_), 7
uniform resource locator (URL), 414
UNION ALL operator, 38, 41
union data types, defined, 457
UNION keyword, 232
UNION operators, 41
UNIQUEIDENTIFIER statement, 47
uniqueidentifier-type column, 58
UNPIVOT operator, DML, 48–52
UNPIVOT query, 52
UNSAFE ASSEMBLY permission, 353
UNSAFE permission, 349
UPDATE events, 152–153
UPDATE function, 156–162
UPDATE statement, 34, 126, 146, 150, 256
UPDATE trigger, 159
UPDATED_COLUMNS function, 161
UPDATETEXT statement, 164
upsert, 124
URL (uniform resource locator), 414
url argument, 414
User ID connection string key,

SqlConnection, 384

■INDEX528

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 528



User_name statement, 181
user_name statement, 181
USERDATAACCESS property, 89
user-defined aggregates (UDAs), SQLCLR

programming, 359–365
user-defined functions, SQLCLR

programming, 349–355
user-defined functions (UDFs), 8

inline table-valued functions (TVFs),
109–113

multistatement table-valued functions
(TVFs), 100–108

overview, 87
restrictions on

nondeterministic functions, 113–114
overview, 113
state of database, 114–115

scalar
overview, 87–90
procedural code in, 93–100
recursion in, 91–93

user-defined types (UDTs), 365–376
USING XML INDEX clause, 264
Using...End Using statement block, 402

■V
-V severity_level option, 19
v switch, 22
-v var = “value” option, 19
value( ) method, 170, 172, 252
value comparison, defined, 460
Value property, proxyclass.SqlParameter

object, 432
value space, 287
VALUE type secondary XML index, 260
value(XQuery, Sql_Type) method, xml data

type, 250
varbinary data, 245
varbinary format, 194
varbinary(max), 34–35
varchar data, 245
VARCHAR data type, 366
varchar string value, 432
varchar(max), 34–35
VARCHAR(MAX) string, 110
Variable references, 288

variables, initializing, 12
VARYING keyword, 118
VIEW_COLUMN_USAGE view,

INFORMATION_SCHEMA, 337
VIEW_TABLE_USAGE view,

INFORMATION_SCHEMA, 337
VIEWS view, INFORMATION_SCHEMA, 

337
Visual Basic language, 2
Visual SourceSafe, 30
Visual Studio Output window, 212
Visual Studio Server Explorer, 209

■W
-W option, 19
-w width option, 19
W3C, defined, 460
W3C XQuery 1.0, 458
WAITFOR statement, 70–72
Warranty child node text, 318
web service consumer, creating

executing HTTP endpoint ad hoc queries,
430–431

overview, 424–430
sqlbatch method, 431–435

WEBMETHOD, 416, 422, 431
<Website> tag, 258
when expressions, 76
WHERE clause, 38, 46, 108, 112, 216, 254, 

335
WHILE statement, 10, 64, 68–69
whitespace, 4–6
whiteSpace facet, 457
wildcard character (*), 234
wildcards, 278
windowing functionality, 59
Windows Data Protection API (DPAPI), 

176
WITH ACTIVE FOR BEGIN_DIALOG 

option, ALTER CERTIFICATE
statement, 183

WITH ALGORITHM keywords, 188
WITH APPEND keywords, 144
WITH clause, 192, 238–239, 241, 263–264
WITH keyword, 88, 121, 144, 165, 208
WITH NEW_ACCOUNT options, 177

■INDEX 529

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 529



WITH OLD_ACCOUNT options, 177
WITH PASSWORD clause, 193
WITH PERMISSION_SET clause, 349
WITH PRIVATE KEY option, 183, 188
WITH RECOMPILE option, 121
WITH SCHEMABINDING option, 89
WITH SUBJECT statement, 181
WITH XMLNAMESPACES option, 283–284
.WRITE clause, 34
Write method, 365
WRITETEXT statement, 164
WriteToServer method, the SqlBulkCopy

object, 401
WSDL argument, 417, 422–423
WSDL documents, 423–424
?wsdl parameter, 423
?wsdlsimple parameter, 423

■X
-X [1] option, 19
-x option, 19
XACT_STATE function, 207
XDM (XPath 2.0 Data Model), 458, 460
xdt namespace, 295
xdt:untypedAtomic data types, 302
XML, 1, 274

defined, 460
indexes, 259–264
OPENXML function, 236–244
overview, 227
querying, 394–397
FOR XML AUTO clause, 229–231
xml data type

overview, 244–245
typed xml, 246–249
untyped xml, 245–246

xml data type methods
exist( ) method, 253–255
modify( ) method, 256–259
nodes( ) method, 255–256
overview, 249–250
query( ) method, 250–252
value( ) method, 252

FOR XML EXPLICIT clause, 231–233
FOR XML PATH clause, 233–236
FOR XML RAW clause, 228–229
XSL transformations, 265–271

XML comment nodes, 301, 457
xml data type, 33–34, 227, 233, 273, 275

methods
exist( ) method, 253–255
modify( ) method, 256–259
nodes( ) method, 255–256
overview, 249–250
query( ) method, 250–252
value( ) method, 252

overview, 244–245
typed xml, 246–249
untyped xml, 245–246

xml directive, 232
xml instances, 247
xml namespace, 295
xml object, 252
:XML ON|OFF command, 24
XML PATH clause, and FOR XPath

columns without names and wildcards,
278

data( ) function, 280–282
element grouping, 279–280
node tests, 284–285
NULL, 282–283
overview, 275–277
WITH XMLNAMESPACES option, 283–284
XPath attributes, 277–278

XML Path Language. See XPath
XML Pointer (XPointer) standards, 274
XML Query Language. See XQuery (XML

Query Language)
XML Reader, 262
XML Schema, defined, 460
xml variable, 249, 258, 291, 302
xml variables, 244, 288
XML_ATTRIBUTES | XML_ELEMENTS

option, OPENXML Flags parameter,
238

XML_ATTRIBUTES option, OPENXML Flags
parameter, 238

XML_ELEMENTS option, OPENXML Flags
parameter, 238

Xml_schema schema, 246
Xml_schema_name schema, 246
XMLDATA option, FOR XML RAW mode, 228
XmlReader class, 396

■INDEX530

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 530



XMLSCHEMA option, FOR XML RAW mode,
229

xmltext directive, 233
xmltext parameter, 237
XmlTextWriter object, 270
XmlToHtml stored procedure, 269
XPath (XML Path Language), 274

defined, 460
and FOR XML PATH clause

columns without names and wildcards,
278

data( ) function, 280–282
element grouping, 279–280
node tests, 284–285
NULL, 282–283
overview, 275–277
WITH XMLNAMESPACES option,

283–284
XPath attributes, 277–278

XPath 2.0 Data Model (XDM), 458, 460
XPath Filter, 262
xpath_namespaces parameter, 237
XPointer (XML Pointer) standards, 274
XPs (extended stored procedures), 114, 345
XQuery (XML Query Language), 274

defined, 460
terms, 457
and XML data type

arithmetic expressions, 310–311
axis specifiers, 296–298
conditional expressions (if...then...else),

310
constructors and casting, 315–316
data types, 302
dynamic XML construction, 298–301
expressions and sequences, 286–288
for, let, where, order by, and return

(FLWOR) expressions, 316–321
location paths, 290–291
namespaces, 294–296
node tests, 292–293
overview, 285
predicates, 302–309
query( ) method, 288–289
XQuery comments, 301–302
XQuery functions, 311–315

xs namespace, 295
xs:anyAtomicType type, 457
xs:anySimpleType data type, XQuery XML,

451
xs:anyType data type, XQuery XML, 451
xs:base64Binary data type, XQuery XML, 453
xs:boolean data type, XQuery XML, 454
xs:boolean type, 287
xs:boolean value, 302, 309
xs:byte data type, XQuery XML, 454
xs:date data type, XQuery XML, 451
xs:date values, 306–307
xs:dateTime data type, XQuery XML, 451
xs:decimal data type, XQuery XML, 454
xs:decimal value, 305, 315
xs:double data type, XQuery XML, 454
xs:duration data type, XQuery XML, 451
xs:ENTITIES data type, XQuery XML, 455
xs:ENTITY data type, XQuery XML, 455
xs:float data type, XQuery XML, 454
xs:gDay data type, XQuery XML, 453
xs:gMonth data type, XQuery XML, 453
xs:gMonthDay data type, XQuery XML, 453
xs:gYear data type, XQuery XML, 453
xs:gYearMonth data type, XQuery XML, 453
xs:hexBinary data type, XQuery XML, 453
xsi namespace, 283, 295
xs:ID data type, XQuery XML, 455
xs:IDREF data type, XQuery XML, 455
xs:IDREFS data type, XQuery XML, 455
xsi:nil attribute, 283
XSINIL option, ELEMENTS keyword, 229
xs:int data type, XQuery XML, 454
xs:integer data type, XQuery XML, 454
xs:integer type value, 315
xs:language data type, XQuery XML, 455
XslCompiledTransform object, 270
xs:long data type, XQuery XML, 454
XSLT (Extensible Stylesheet Language

Transformations), 265–271, 274, 461
XSLT style sheet, 268
xs:Name data type, XQuery XML, 455
xs:NCName data type, XQuery XML, 455
xs:negativeInteger data type, XQuery XML,

454
xs:NMTOKEN data type, XQuery XML, 455

■INDEX 531

Find
itfasterathttp://superindex.apress.com

/

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 531



xs:NMTOKENS data type, XQuery XML, 455
xs:nonNegativeInteger data type, XQuery

XML, 454
xs:nonPositiveInteger data type, XQuery

XML, 454
xs:normalizedString data type, XQuery XML,

455
xs:positiveInteger data type, XQuery XML,

454
xs:short data type, XQuery XML, 454
xs:string data type, XQuery XML, 455
xs:string value, 305
xs:time data type, XQuery XML, 453

xs:token data type, XQuery XML, 455
xs:unsignedByte data type, XQuery XML, 454
xs:unsignedInt data type, XQuery XML, 454
xs:unsignedLong data type, XQuery XML, 455
xs:unsignedShort data type, XQuery XML,

455

■Y
-y display_width option, 20

■Z
-z new_password option, 20
-Z new_password option, 20

■INDEX532

794Xidxfinal.qxd  3/29/07  4:18 PM  Page 532


	Table of Content
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Index



